
 THROUGHPUTER

Application load and type

adaptive parallel computing

© ThroughPuter, Inc. All rights reserved.

OVERVIEW

1) Fundamental transformation in computing:

 Parallel computing on dynamically shared (cloud)
infrastructure

2) Industry-wide, must-solve challenge:

 Calls for an open-source platform approach

3) Innovation to enable performance-critical cloud
computing:

 Dynamic parallel execution environment

4) Call for collaboration

2

© ThroughPuter, Inc. All rights reserved.

1) Fundamental transformation in computing

A. What higher clock rates were needed for (=everything),
parallel processing will be needed for:

 For decades, application program speed-up was automatic
through higher processor clock rates

• Processor clock rate increases no longer feasible/economical

 Going forward performance gain demands parallel processing

• Including at intra-application level

→ Very complex and distracting!

3

© ThroughPuter, Inc. All rights reserved.

1) Fundamental transformation in computing

B. Computing is increasingly taking place on dynamically
shared cloud infrastructure

 A. (parallel processing) and B. (cloud computing) together:

→ Need for dynamic parallel computing

 Must-solve challenge for application developers, who however
are ill-equipped to address it

4

 Fundamental challenge for software industry calling for a solution

© ThroughPuter, Inc. All rights reserved.

Scaling parallel cloud computing with software operating system

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Scaling factor: # apps = # tasks/app = # cores

T
h

r
o

u
g

h
p

u
t
,

o
v

e
r
h

e
a

d
 /

n
o

r
m

a
li

z
e

d
 u

n
ic

o
r
e

 t
h

r
o

u
g

h
p

u
t

System throughput capacity

Overhead rate

Throughput rate/core

1) Scalability Problem in Parallel Cloud Computing =

SYSTEM SOFTWARE OVERHEAD

5

Cost

R
ev

en
u

e

Parallelization overhead
increases according to
f1(#apps) * f2(#tasks/app) * f3(#cores)

© ThroughPuter, Inc. All rights reserved.

Scaling parallel cloud computing with hardware operating system

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Scaling factor: # apps = # tasks/app = # cores

T
h

r
o

u
g

h
p

u
t
,

o
v

e
r
h

e
a

d
 /

n
o

r
m

a
li

z
e

d
 u

n
ic

o
r
e

 t
h

r
o

u
g

h
p

u
t

System throughput capacity

Overhead rate

Throughput rate/core

1) Scalability Solution for Parallel Cloud Computing =

AUTOMATE SYSTEM FUNCTIONS IN HARDWARE

6

Eliminating
parallelization
software overhead
by hardware OS
allows near-linear
application on-time
throughput scaling

Cost

R
ev

en
u

e

© ThroughPuter, Inc. All rights reserved.

2) Industry-wide, must-solve challenge

 Existing computing tech suppliers offer point-products or
half-solutions:

• parallel programming language (extensions), frameworks, tools,
middleware, manycore processors, etc.

 Burden of cost-efficient parallel cloud computing left for
individual application developers (SaaS vendors)

→ Status-quo not sustainable

7

 A holistic platform solution needed for parallel cloud computing

© ThroughPuter, Inc. All rights reserved.

 3) Parallel cloud computing platform

 Existing parallel computing tools mainly limited to parallel
programming aspect of parallel computing challenge

 Any parallel execution tools etc. designed for acceleration
on dedicated machines, not on the cloud

→ Parallel execution in cloud i.e. dynamic parallel execution,
though critical for cloud computing cost-efficiency, left
unaddressed by legacy vendors

8

Dynamic parallel execution critical piece of
performance-critical cloud computing

© ThroughPuter, Inc. All rights reserved.

3) ThroughPuter: parallel computing PaaS

 ThroughPuter has developed a critical technology
enabling effective parallel cloud computing platform:

• Dynamic parallel execution architecture
• Implemented in HDL code

• User-friendly PaaS business model
• Incentives to maximize computing on-time throughput performance and

resource efficiency as well as user’s productivity

• Intellectual property rights for dynamic parallel execution
• 45 patents issued and pending worldwide, incl. 19 granted US/UK patents

9

Performance and efficiency of dynamic parallel execution with
high development productivity and deployment flexibility

Development
environment

• software

• open
sourced

Development
environment

• software

• open
sourced

© ThroughPuter, Inc. All rights reserved.

 .
 .
 .

Patents issued and pending. 10

Application tasks, residing in their dedicated memory segments

•From each application: core demand
expressions, task priority lists
•For each app: sets of tasks for execution

app0
task1

. . .

 .
 .
 .

app1
task0

app0
task2 appN

taskM

Parallelized

application tasks
(executables)

 3) ThroughPuter: Platform Overview

Execution
environment

• hardware

• patent
protected

Execution
environment

• hardware

• patent
protected

Open
standard
interface

Open
standard
interface

User interface and development tools:
• GUIs, flow charts, code-advisors for parallelizing application programs (e.g. web based Eclipse)

• Compilers

 core . . .

 .
 .
 .

10

Hardware operating system and dynamic on-chip network:

•Switch app tasks to execution cores based on processing load demands and contractual policies
•Dynamically, efficiently and securely connect tasks of any given app, rather the cores statically

 Simpler implementation, higher performance

core

core

core

Core array

© ThroughPuter, Inc. All rights reserved.

 3) ThroughPuter: open parallel computing PaaS

Reasons for open-source collaboration for parallel computing
platform to be based on ThroughPuter execution environment:

1) Less low-level work: ThroughPuter’s execution environment automates
parallel execution routines in (programmable) hardware, providing higher level
interface (API) for the development environment software

2) Higher performance due to minimum-overhead hardware automation of
system tasks such as optimally allocating processing capacity, scheduling and
placing application tasks for execution, inter-task communications, billing etc.

3) Built-in cloud computing security: mechanisms for unauthorized interactions
between different applications simply non-existent in the hardware

4) Open standard interface between development and execution environment

Dynamic parallel capacity allocation example and
associated functional processor architecture block diagram on next slides

Open parallel computing PaaS needed -- ThroughPuter execution

environment goes a long way toward reaching that goal

11

© ThroughPuter, Inc. All rights reserved. Patents issued and pending.

time X us

app1

app2

app3

app4
3) Dynamic Core Allocation Example

Core Allocation Period (CAP)

All tasks
continuing on

consecutive CAPs
stay on their

existing core, and
continue

processing
uninterruptedly

through CAP
boundaries

Allocation of
cores re-

optimized among
applications for
each new CAP
based on core
demands and

entitlements of
the applications

X+1 us

Any application
can burst even up
to full capacity of
the shared core
pool, as long as

actually
materialized core
demands by other
apps are met up to
their entitlements

X+2 us

Any task can
communicate
with all other

tasks of its app
instance without

knowledge of
whether or at

which core any
given task is

running

X+3 us

Core (in 16-core array)

12

© ThroughPuter, Inc. All rights reserved.

Example:

Average core demands by

applications sharing a 16-core processor

app1

12.5%

app2

25%

app3

12.5%

app4

50%

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

cores demanded

time / microsecond

Actual core demands by applications over 10us period

app1

app2

app3

app4

1
2

3
4

0

1

2

3

4

5

6

7

8

9

Cores

Application #

Actual and average core demands at t = 6 microseconds

cores demanded

static allocation

Idle
capacity

Blocked
demand

3) Manycore Cloud Computing Challenge –
 Technical

13

© ThroughPuter, Inc. All rights reserved.

3) Manycore Cloud Computing Challenge -
Economical

• The actual, momentary processing capacity demand by any given individual application program
hardly ever equals its ‘average’ demand

 Non-adaptive capacity partitioning leads to wasting of resources and blocking on-time throughput

• Capacity being held statically in reserve for idling applications should have been allocated to other
applications on the manycore processor that at that time would have been able to use it

1
2

3
4

0

1

2

3

4

5

6

7

8

9

Cores

Application #

Actual and average core demands at t = 6 microseconds

cores demanded

static allocation

Blocked
demand

= lost
revenue

Idle
capacity

 = wasted
cost

14

© ThroughPuter, Inc. All rights reserved.

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Time / microsecond

C
o

re
s
 d

e
m

a
n

d
e
d

 b
y
 a

n
 a

p
p

li
c
a
ti

o
n

Realtime demand

of the application

Average demand

of the application

3) Manycore Cloud Challenge –
ThroughPuter’s Solution

Dynamic
allocation of

otherwise idle
capacity

to other app:s
that can use it

..to enable
on-demand

bursting
for maximized

on-time
throughput

per given cost

• ThroughPuter enables application load adaptive,
dynamic parallel cloud computing

15

© ThroughPuter, Inc. All rights reserved.

Hardware operating system

STEP 1
Once per a

core
allocation
period (e.g.

microsecond) :
Allocate
cores to

applications

Core demand
figures

from
applications

Manycore processing fabric

Ready-task priority
ordered lists from
applications,
along with the core
types demanded by
each task

STEP 3

For each application:

Map selected tasks
to available cores

For each core:
Active
application
task ID

For each
application:
Number of
cores
allocated

For each task:
Processing
core ID and
core type

For each
application:
List of
selected
tasks, along
with their
demanded
core types

Billing

subsystem

For each application:
Core entitlements For each application:

Billables

 To/from contract management system

STEP 2

For each
application:

Select
to-be-

executing
tasks

time
tick

core
slot

core
slot

core
slot

. . .

Fabric network and memories

core
slot

core
slot

.

.

.

Patents issued and pending. 16

© ThroughPuter, Inc. All rights reserved.

3) Summary of Advantages

• PERFORMANCE and COST-EFFICIENCY:
– Architecturally maximized application processing on-time

throughput per unit cost
• Hardware operating system and on-chip network optimized for dynamic

parallel processing on multi-client shared manycore processors

• SECURITY:
– Full isolation, right from hardware level up, among client

applications dynamically sharing a pool of cores

• PRODUCTIVITY:
– Integrated development environment of PaaS automate

parallel program development and deployment

• OPEN SYSTEM:
– PaaS software and processor-core hardware to be open-sourced

– Host anywhere; ThroughPuter commercial hosting an option

17

© ThroughPuter, Inc. All rights reserved.

4) Call for Collaboration

• The need for parallel processing an emerging, MAJOR
industry and profession wide challenge
 Open-source collaboration a natural approach

• Need for architectural optimization across traditional
application, system and hardware layer boundaries

SOLUTION: Open-source PaaS reaching all the way to
parallel cloud computing optimized hardware
– ThroughPuter’s contribution: Hardware architecture designed

for dynamically shared multi-user parallel cloud computing
• Secure hardware OS for manycore fabric with on-chip network, taking

care of dynamic capacity allocation, parallel program execution mgmt

– Collaboration opportunities:
• Development environment and tools
• Extensions of the PaaS for specific user domains: channel partnerships
• Processor-core IP for the cloud processors;
• Physical hardware supply, physical hosting (IaaS) etc.

18

tech@throughputer.com

www.throughputer.com

mailto:tech@throughputer.com
http://www.throughputer.com/
http://www.throughputer.com/

