
© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 1 of 6

Hardware Implemented Scheduler, Placer, Inter-Task

Communications and IO System Functions for Manycore

Processors Dynamically Shared among Multiple

Applications
 Mark Sandstrom

ThroughPuter, Inc.
mark@throughputer.com

ABSTRACT

To enable maximizing on-time processing throughput across

multiple internally pipelined/parallelized applications on

dynamically shared manycore processors by eliminating system

software overhead, a hardware automated implementation of the

parallel execution system functions is presented. In the presented

implementation scenario, the manycore processor hardware

provides, besides the processing cores, IO and memories, the

system functions of monitoring the applications’ processing loads,

periodically (e.g. at microsecond intervals) allocating processing

resources (cores) among the applications based on their

processing load variations and contractual entitlements,

prioritizing application task instances for execution, mapping

selected task instances for execution on their assigned cores, and

accordingly dynamically configuring the inter-task

communications, IO and memory access subsystems (and on

programmable hardware, the core slot types). The result pursued

is a realtime application load and type adaptive manycore

processor architecture, enabling scalable, secure, high-

performance and resource-efficient, dynamic parallel cloud

computing.

Categories and Subject Descriptors

C.2.4 [Cloud computing]

General Terms

Algorithms, Management, Performance, Design, Economics,

Experimentation, Security, Standardization, Theory.

Keywords

Dynamic parallel execution, application load adaptive processing,

hardware-automation of operating system functions.

1. INTRODUCTION
Traditionally, advancements in computing technologies have

fallen into two categories. First, in the field conventionally

referred to as high performance computing, the main objective has

been maximizing the processing speed of one given

computationally intensive program running on a dedicated

hardware comprising a large number of parallel processing

resources. Second, in the field conventionally referred to as utility

or cloud computing, the main objective has been to most

efficiently share a given pool of computing hardware resources

among a large number of user application programs. Thus, in

effect, one branch of computing technology advancement effort

has been seeking to effectively use a large number of parallel

processors to accelerate execution of a single application program,

while another branch of the effort has been seeking to efficiently

share a single pool of computing capacity among a large number

of user applications to improve the capacity utilization.

However, there have not been major synergies between these two

efforts; often, pursuing any one of these traditional objectives

rather happens at the expense of the other. For instance,

dedicating an entire parallel processor based (super) computer per

individual application causes severely sub-optimal computing

resource utilization, as much of the capacity would be idling much

of the time. On the other hand, seeking to improve utilization of

computing systems by sharing their processing capacity among a

number of user applications using conventional technologies will

cause non-deterministic, compromised performance for the

individual applications, along with security concerns. As such, the

overall cost-efficiency of computing is not improving as much as

improvements toward either of the two traditional objectives

would imply: traditionally, single application performance

maximization comes at the expense of system utilization

efficiency, while overall system efficiency maximization comes at

the expense of individual application performance.

There thus exists a need for a new parallel computing architecture,

which, at the same time, enables increasing the speed of executing

application programs, including through execution of a given

application in parallel across multiple processor cores, as well as

improving the utilization of the available computing resources,

thereby maximizing the collective application processing on-time

throughput for a given cost budget. Moreover, even outside

traditional high performance computing, the application

performance requirements will increasingly be exceeding the

processing throughput achievable from a single CPU core, e.g.

due to the practical limits being reached on the CPU clock rates.

This creates an emerging requirement for intra-application parallel

processing (at ever finer grades) also for mainstream programs.

Notably, these internally parallelized enterprise and web

applications will be largely deployed on dynamically shared cloud

computing infrastructure. Accordingly, the emerging form of

mainstream computing calls for technology innovation supporting

executing large number of internally parallelized applications on

dynamically shared parallel processing resource pools.

Generally, dynamically optimizing resource usage in a large

capacity parallel processing system among a large number of

applications and their instances and tasks, in pursuing both

predictable, high performance for each individual application as

well as efficient system resource utilization, does present a

complex problem, resolving which would consume plenty of the

system’s resources if handled in software. It is not trivial to

answer the question: To which application task instance should

any given processing resource be assigned at any given time, to

achieve optimal system-wide application processing throughput?

http://www.throughputer.com/
mailto:mark@throughputer.com

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 2 of 6

2. MULTI-STAGE PARALLEL

PROCESSING ARCHITECTURE

2.1 Overview
To address the above challenges, this paper presents an

architecture for extensible, application program load and type

adaptive, multi-stage manycore processing systems (Fig. 1). The

presented architecture takes the following approach to enable

scaling the dynamic resource optimization for increasing numbers

(and types) of pooled processing resources and application

programs (apps), their instances (insts) and tasks sharing the

pooled resources:

1) The processing resources and app processing is partitioned

into (manycore processor based) processing stages, which, per

any given app, can be arranged to support various

combinations of pipelined and parallelized processing. This

brings the following benefits:

a. The system has to support, per each processing stage, only

one task per each of the apps dynamically sharing the

system. At each processing stage though, there will be a

dynamically optimized number of active insts of the local

tasks of each app. The resource management for each

stage is thus simpler than it would be for the full system,

where there are multiple tasks per each app.

b. The resource management is done independently for any

given stage, which, besides being simpler due to there

being just one task per app, limits the scope of the

function, adding to the scalability of the architecture. Note

that the dynamic resource optimization at each processing

stage of the system, while done independently, is adaptive

to the apps’ processing load variations (incl. the

processing input volumes received by any given stage

from the other stages/external network inputs), so that the

per-stage distributed dynamic resource management still

achieves full system scope resource usage optimization.

2) The processing core resource management at each manycore

based processing stage is further partitioned as follows:

a. First, the allocation of the cores (of the local manycore

processor) among the apps (i.e. their local tasks at that

stage) is optimized periodically, based (in part) on the

input processing load variations among the apps.

b. Based on such core allocations, highest priority insts of

the local app tasks are assigned for processing on a

number of cores allocated to each given app. To minimize

task switching overhead, continuing app-task insts are

kept at their existing cores, and activating app-task insts

are mapped to cores occupied by de-activating app-task

insts -- on processors supporting multiple (dynamically

reconfigurable) core types, so that the core types

demanded by incoming app-task insts match, to the extent

possible, the core type of their assigned core slots

occupied by outgoing app-task insts.

By partitioning the system-wide dynamic resource management

functionality per above, the individual functions of resource

management for dynamically shared manycore arrays become

feasible (e.g. in terms complexities of data structures needed) for

direct hardware (e.g. FPGA) implementation. The all-hardware

implementation of such system functions further adds to the

scalability of the architecture (per Figs. 1-5) via system software

overhead reduction. Since the hardware automated system

functions do not consume any of the system processor capacity no

matter how frequently the capacity is reallocated, and since the

hardware algorithms run in just a few clock cycles, as well as

since hardware automated task switching for the processor cores is

non-visible to software, this architecture also enables re-

optimizing the system resource assignment as frequently as

needed to accommodate the apps’ processing load variations. The

main structures and elements of the architecture, and their

operation, are described in the following.

2.2 Multi-stage Pipelined/Parallel Processing

External

input ports

External

output ports

Packet

switch

(PS)

PS

ports #0

App. load

adaptive

manycore

processing

system

(worker

stage #0)

PS

ports #1
(worker

stage # 2)

PS

ports #T-1

(worker

stage # T-1)

App. load

adaptive

manycore

processing

system

(entry

stage)

App. load

adaptive

manycore

processing

system

(exit

stage)

PS input

ports #T

PS output

ports #T

PS ports #T

.

.

.

Figure 1. Multi-stage manycore processor system architecture.

General operation of the application load adaptive, multi-stage

parallel data processing system per FIG 1., focusing on the main

I/O data flows, is as follows: The system provides data processing

services to be used by external parties (e.g. by client apps) over

networks. The system receives data packets from its users through

its network input ports, and transmits the processing results to the

relevant parties through its network output ports. Naturally the

network ports of the system of Fig. 1 can be used also for

connecting with other resources and services (e.g. storage, data

bases etc.) as/if necessary to produce the requested processing

results. The app tasks executing on the entry stage manycore

processor are typically of ‘master’ type for parallelized/pipelined

apps, i.e., they manage and distribute the processing workloads

for ‘worker’ type tasks running on the worker stage manycore

processing systems (note that the processor system hardware is

similar for all instances of the processing system). The insts of

master tasks typically do pre-processing (e.g. message/request

classification, data organization) and workflow management

based on input packets, and then typically involve appropriate

worker tasks at their worker stage processors to perform the data

processing called for by the given input packet(s), potentially in

the context of and in connection with related input and/or stored

data elements. (The processors can have access to system

memories through interfaces additional to the IO ports shown in

the Figs.) Accordingly, the master tasks typically pass on the

received data units (using direct connection techniques to allow

most of the data volumes being transferred to bypass the actual

processor cores) through the inter-stage packet-switch (PS) to the

worker stage processors, with the destination app-task inst

identified for each data unit.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 3 of 6

2.3 Inter-Stage Data Flow and Processing

Load Balancing
The any-to-any connectivity among the app-tasks of all the

processing stages provided by the PS (Fig.1) enables organizing

the worker tasks (located at the array of worker stage processors)

flexibly to suit the individual needs (e.g. task inter-dependencies)

of any given app on the system: the worker tasks can be arranged

to conduct the work flow for the given app using any desired

combinations of parallel and pipelined processing. E.g., it is

possible to have copies of a particular (data parallelizable) task of

a given app located on any number of the worker stages in the

architecture per Fig. 1, to provide a desired number of parallel

copies of a given app task. The set of apps configured to run on

the system have their tasks identified by (intra-app) IDs according

to their descending order of relative workload levels. The sum of

the intra-app task IDs (with each ID representing the workload

ranking of its task within its app) of the app-tasks hosted at any

given processing system is equalized by appropriately locating the

tasks of differing ID#s, i.e. of differing workload levels, across the

apps for each processing stage, to achieve optimal overall load

balancing. For instance, in case of four worker stages, if the

system is shared among four apps and each of that set of apps has

four tasks, for each app of that set, the busiest task (i.e. the worker

task most often called for or otherwise causing the heaviest

processing load among tasks of the app) is given task ID#0, the

second busiest task ID#1, the third busiest ID#2, and the fourth

ID#3. To balance the processing loads across the apps among the

worker stages of the system, the worker stage #t gets task ID#t+m

(rolling over at 3 to 0) of the app ID #m (t=0,1,…T-1;

m=0,1,…M-1). In this example scenario of four apps, four worker

tasks per app as well as four worker stages, the above scheme

causes the task IDs of the set of apps to be placed at the

processing stages per Tbl. 1 below:

App ID# m (to right)
0 1 2 3

Worker stage# t (below)

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 1.

As seen in the example of Tbl. 1, the sum of the task ID#s (with

each task ID# representing the workload ranking of its task within

its app) is the same for any row i.e. for each worker stage.

Applying this load balancing scheme for differing numbers of

processing stages/tasks and apps is straightforward based on this

example, so that the overall task processing load is to be, as much

as possible, equal across all worker-stage processors of the

system. Advantages of such schemes include optimal utilization

efficiency of the processing resources and minimizing the

possibility or effects of any of the worker-stage processors

forming system-wide performance bottlenecks.

2.4 Application-Load Adaptive Manycore

Processor Architecture
From here, we continue by exploring the internal structure and

operation of a given processing stage, a high level functional

block diagram of which is shown in Fig. 2 below.

Processor system

input port #0

Application load adaptive

manycore processor

system

Core #1

input port

.

.

.

Core #0

input port

Core #Y-1

input port

External input

ports or RX

direction of

inter-stage

ports (see FIG.

1)

Receive (RX)

logic for a

processing stage

Processor system

input port #1

Processor system

input port #X-1

Processor system

output port #0

.

.

.

External output

ports or TX

direction of

inter-stage

ports

(see FIG. 1)

Processor system

output port #1

Processor system

output port #Y-1

From each core to

its assigned app-inst:

Read control info

.

.

.
 From each app:

Nr of ready inst:s
and priority order of

instances
 Per each core:
ID# of selected

app-inst

Figure 2. Top-level diagram for any of the processing stages in

the multi-stage parallel processing system in Fig. 1.

Per Fig. 2, any of the processing stages of the system (Fig. 1) has,

besides the manycore processor system (Figs. 3-5), an RX logic

subsystem, which connects input data packets from any of the

input ports to any of the processing cores of the processing stage,

according to at which core the indicated destination app-inst of

any given packet may be executing at any given time. Moreover,

the monitoring of the buffered input data load levels per each

destination app-inst at the RX logic subsystem enables optimizing

the allocation of processing core capacity of the local manycore

processor among the app tasks hosted on that processing stage.

Internal elements and operation of the application load adaptive

manycore processor system are illustrated in Fig. 3. Since there is

one task per app per processing stage (though there can be

multiple insts of any app-task at its local processing stage), the

term app-inst in the context of a single processing stage means an

instance of an app-task hosted at the processing stage under study.

controller

core

demand

figure

(CDFs)

core

core

core

core

core

core

. . .

.

.

.

core

fabric

Per each core:

active app-inst ID

priority order of

ready inst:s

core array

fabric network and memories

Per each

active app-inst:

execution core ID

operating

interface

core #1

input port

core #0

input port

core #Y-1

input port

.

.

.

output port #0

.

.

.

output port #1

output port #Y-1

From

each

app

mux

input port
read ctrl
from cores

To each app-inst:
read ctrl info

Figure 3. Application load adaptive manycore processor for

the processing stage per Fig. 2 (within the multi-stage parallel

processing system per Fig. 1).

Fig. 3 provides a block diagram for the manycore processor

system dynamically shared among insts of the locally hosted app-

tasks, with capabilities for application processing load adaptive

allocation of the cores among the apps, as well as for dynamically

reconfigured IO and memory access by the app-task insts. Any of

the cores of a processor per Fig. 3 can comprise any types of

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 4 of 6

processing hardware resources, e.g. central processing units

(CPUs), graphics processing units (GPUs), digital signal

processors (DSPs) or application specific processors (ASPs) etc.,

and in programmable logic (FPGA) implementation, the core type

for any core slot is furthermore reconfigurable per expressed

demands of its assigned app-task. App specific logic modules at

the RX module (Fig. 2) write their associated apps’ capacity

demand indicators, core-demand-figures (CDFs), to the controller

of the local manycore processor. The CDFs express how many

cores their associated app is presently able to utilize for its ready

to execute insts. Each app’s capacity demand expressions for the

controller further include a list of its ready insts in an execution

priority order. Criteria for prioritizing app-insts for execution

includes whether a given inst has available to it such input data

and fast-access memory contents that enable it to execute at the

given time. The hardware logic based controller module within

the processor system, through a periodic process, allocates and

assigns the cores of the processor among the set of apps and their

insts (in part) based on the CDFs of the apps. This app-inst to core

assignment process is exercised periodically, at intervals such as

once per a defined number (e.g. 1024) of processing core clock or

instruction cycles. Fig. 4 below provides a data flow diagram for

the hardware implemented controller, which periodically, e.g.

once per microsecond, selects app-insts for execution, and places

each selected-to-execute app-inst to one of the cores of the local

manycore processor. As shown in Figs. 2 and 3, the app-inst to

core mapping info also directs muxing of input data from the RX

buffers of an appropriate app-inst to each core of the array, as well

as muxing of the read control signals from the core array to the

RX buffers of the app-inst that is assigned for any given core at

any given time.

Controller performing the periodic process of assigning app-inst:s to cores

Allocate core

slots to

applications

Core

demand

figures

(CDFs) from

applications

Core fabric, including IO, memory access and core-slot reconfiguration subsystems

Ready-task priority ordered

lists from applications,

along with the core types

demanded by each task

For each application:

Map selected tasks

to core slots and

assign appropriate core

type for each slot

For each core slot:

Active

application

task ID and

core type

For each

application:

Number of

cores

allocated

For each

application:

List of

selected

tasks, along

with their

demanded

core types

For each

application:

Select to-be-

executing

tasks

For each task:

Processing

core slot ID

Figure 4. App-inst to core mapping process for the manycore

processor per Fig. 3.

Fig. 4 presents major phases of the app-inst to core mapping

process, used for maximizing the value-add of the app processing

throughput of the manycore fabric shared among a number of

apps. This process, periodically selecting and mapping the to-be-

executing insts of the set of app-tasks to the array of processing

cores of the local processor, involves the following steps:

(1) allocating the array of cores among the set of apps, based on

CDFs and contractual entitlements of the apps, to produce for

each app a number of cores allocated to it (between the

current and the next run of the process); and

(2) based at least in part on the allocating, for each given app that

was allocated one or more cores:

(a) selecting, according to the inst priority list of the given

app, the highest priority insts of the app for execution

corresponding to the number of cores allocated to the

given app, and

(b) mapping each selected app-inst to one of the available

cores of the array, to produce,

i) per each core of the array, an identification of the

app-inst that the given core was assigned to, and

ii) per each app-inst selected for execution on the fabric,

an identification of its assigned core.

The periodically produced and updated outputs of the controller

process are used for periodically re-configuring connectivity

through the RX subsystem (Fig. 2) as well as the fabric memory

access subsystem (Fig. 5).

2.5 Fabric Memory Access Subsystem for

Dynamically Allocated Manycore Processor
Fig. 5 and related specifications below, along with the reference

[1] (in particular its figures 8-10) describe the manycore processor

on-chip memory access subsystem providing non-blocking

processing memory access (incl. for program instructions and

interim processing results) between the app-insts dynamically

assigned to cores of the array and the app-inst specific memories

at the memory array of the core fabric. The capabilities per Fig. 5

provide logic, wiring, memory etc. system resource efficient

support for executing any app-inst at any core within the

processor at any given time (as controlled by the controller that

periodically optimizes the allocation and assignment of cores of

the array among the locally hosted app-insts), while keeping each

given app-inst transparently connected to its own (instruction and

interim data containing) memory block at memory array.

Array of cores

Cross-connect

W
rite and

read control

buses

from
 cores

R
ead buses

to cores

Cross-connect

Array of app-inst specific

processing memories

Controller

F
or each app-inst

(if selected to execute by latest run

of the process):
ID

o
f th

e p
ro

cessin
g co

re

A
pp-inst

m
em

ory

access

Fabric

network

and

memories

F
or each core:

ID
of the

app-inst to process

Figure 5. Dynamically reconfigured access by app-insts

dynamically assigned for execution at the core array to app-

inst specific memory blocks within the core fabric.

Per Fig. 5, to direct write and read control access from the array of

cores to the array of app-inst specific memories, the controller

identifies, for app-inst specific muxes at the cross-connect (XC)

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 5 of 6

between the core array and memory array, the presently active

source core (if any) for write and read control access to each given

app-inst specific segment within the fabric memory array.

Similarly, to direct read access by the array of cores to the array of

app-inst specific memories, the controller identifies, for core

specific muxes at the XC, the memory segment of the app-inst

presently assigned for each given core of the array. Based on the

control by the controller for a given core indicating that it will be

subject to an app-inst switchover, the currently executing app-inst

is made to stop executing and its processing state from the core is

backed up to the segment of that exiting app-inst at the memory

array, while the processing state of the next app-inst assigned to

execute on the given core is retrieved to the core from the memory

array. Cores not indicated by controller as being subject to app-

inst switchover continue their processing uninterruptedly through

the core allocation period transitions. Note that applying of

updated processing core ID# configurations for the app-inst

specific mux:s at the XC and app-inst ID# configurations for the

core specific mux:s of the XC (Fig. 5) as well as of the RX logic

(Fig. 2) can be safely and efficiently done by the hardware logic

without software involvement, since none of the app-insts needs

to know whether or at which core itself or any other app-inst is

executing within the system at any given time. Instead of relying

on knowledge of the their respective previous, current (if any at a

given time) or future execution cores by either the application or

any system software, the architecture enables flexibly running any

insts of any app-tasks at any core of their local processing stages.

2.6 Specifics of the Application Instance to

Core Assignment Process

2.6.1 Hardware automation of dynamic resource

management
To enable rapidly re-optimizing the allocation and assignment of

the system processing core capacity among the insts and tasks of

the apps sharing the processing system per Fig. 1 according to the

realtime processing load variations among the app-task-insts, the

dynamic resource management processes are implemented by

hardware logic in the manycore processor controller modules per

Fig. 4. Similar processes are run (independently) for each of the

processing stages of a given multi-stage manycore processor

system per Fig. 1. The application processing load adaptive,

dynamic core assignment process per Fig. 4 comprises algorithms

for core allocation, app-inst selection and mapping, as detailed in

the following.

2.6.2 Algorithm for allocating the cores among the

applications
Objectives for the core allocation algorithm include maximizing

the processor core utilization (i.e., generally minimizing, and so

long as there are ready app-insts, eliminating, core idling), while

ensuring that each app gets at least up to its entitled (e.g. a

contract based minimum) share of the processor core capacity

whenever it has processing load to utilize such amount of cores.

Each app sharing a given manycore processor (Fig. 3) is specified

its entitled quota of the cores, at least up to which number of cores

it is to be allocated whenever it is able to execute on such number

of cores in parallel. Naturally, the sum of the apps' core

entitlements (CEs) is not to exceed the total number of core slots

in the given processor. Each app on the processor gets from each

run of the core allocation algorithm:

(1) at least the lesser of its (a) CE and (b) core demand figure

(CDF) worth of the cores; plus

(2) after condition (1) is met for all apps sharing the processor,

as many additional cores to match its CDF as is possible

while maintaining fairness among apps whose CDF is not

fully met; plus

(3) the app's fair share of any cores remaining unallocated after

conditions (1) and (2) are met for all the apps.

This algorithm allocating the cores to apps runs as follows:

(i) First, any CDFs by all apps up to their CE of the cores within

the array are met. E.g., if a given app #P had its CDF worth

zero cores and entitlement for four cores, it will be allocated

zero cores by this step (i). As another example, if a given app

#Q had its CDF worth five cores and entitlement for one core,

it will be allocated one core by this stage of the algorithm.

However, to ensure that each app-task will be able at least to

communicate at some defined minimum frequency, the step (i)

of the algorithm allocates for each app, regardless of the

CDFs, at least one core once in a specified number (e.g.

sixteen) of the core allocation periods.

(ii) Following step (i), any processing cores remaining

unallocated are allocated, one core per app at a time, among

the apps whose CDF had not been met by the amounts of

cores so far allocated to them by preceding iterations of this

step (ii) within the given run of the algorithm. For instance, if

after step (i) there remained eight unallocated cores and the

sum of unmet portions of the app CDFs was six cores, the app

#Q, based on the results of step (i) per above, will be allocated

four more cores by this step (ii) to match its CDF.

(iii) Following step (ii), any processing cores still remaining

unallocated are allocated among the apps evenly, one core per

app at time, until all the cores of the array are allocated among

the set of apps. Continuing the example case from steps (i)

and (ii) above, this step (iii) will allocate the remaining two

cores to certain two of the apps (one for each). Apps with zero

existing allocated cores, e.g. app #P from step (i), are

prioritized in allocating the remaining cores by this step (iii).

Moreover, the iterations of steps (ii) and (iii) per above are started

from a revolving app ID# within the set, so that the app ID# to be

served first by these iterations is incremented by one (and

returning to 0 after reaching the highest app ID#) for each

successive run of the algorithm.

Accordingly, all cores of the array are allocated on each run of the

above algorithm according to apps’ processing load variations

while honoring their contractual entitlements. I.e., the allocating

of the array of cores by the algorithm is done in order to minimize

the greatest amount of unmet demands for cores (i.e. greatest

difference between the CDF and allocated number of cores for

any given app) among the set of apps, while ensuring that any

given app gets its CDF at least within its CE met on each

successive run of the algorithm.

2.6.3 Algorithm for assigning app-insts for the cores
Following the allocation of the array of cores among the apps, for

each app on the processor that was allocated one or more cores by

the latest run of the core allocation algorithm, the individual

ready-to-execute app-insts are selected and mapped to the number

of cores allocated to the given app. One of the selected app-insts

is assigned per one core by each run of this algorithm.

http://www.throughputer.com/

© ThroughPuter, Inc. All rights reserved.

www.throughputer.com

Page 6 of 6

The app-inst to core assignment algorithm for each given app

begins by keeping any continuing app-insts, i.e., app-insts

selected to run on the core array both on the present and the next

core allocation period, mapped to their current cores. After that

rule is met, any newly selected insts for the given app are mapped

to available cores. Assuming that a given app was allocated k (a

positive integer) cores beyond those used by its continuing app-

insts, k highest priority not-yet-mapped app-insts of the app are

chosen to be mapped to the remaining available cores allocated to

the given app, starting from the insts that are ready-to-execute.

When the app-inst to core mapping module of the controller (Fig.

4) gets an updated list of selected insts for the apps (following a

change in either or both of core to app allocations or app-inst

priority lists of one or more apps), it identifies from them the

following:

I. The set of activating, to-be-mapped, app-insts, i.e., selected

app-insts that were not mapped to any core by the previous

run of the placement algorithm;

II. The set of deactivating app-insts, i.e., app-insts that were

included in the previous, but not in the latest, selected app-

inst lists; and

III. The set of available cores, i.e., cores which in the latest

assignment table were assigned to the set of deactivating app-

insts (set II above).

The sets I and II can be obtained as the incoming and outgoing

app-insts for each of the cores for which the two are different. The

app-inst to core assignment algorithm uses the info from the

above sets to map the active app-insts to cores of the array so as to

keep the continuing app-insts executing on their present cores,

thus maximizing the utilization of the core array for user app

processing, and by mapping the individual app-insts within the set

I of activating app-insts for processing at the set III of available

cores (according to their increasing app-inst and core IDs).

Moreover, regarding placement of activating app-insts (set I as

discussed above) on processors with reconfigurable core slots, the

assignment algorithm seeks to minimize the amount of core slots

for which the activating app-inst demands a different execution

core type than the deactivating app-inst did. I.e., the app-inst to

core assignment algorithm will, to the extent possible, place

activating app-insts to such core slots (within the core array of the

local processor) where the deactivating app-inst had the same

execution core type. E.g., activating app-inst demanding the DSP

type execution core will be placed to the core slots where the

deactivating app-insts also had run on DSP type cores. This sub-

step in placing the activating app-insts to their target core slots

uses as one of its inputs the new and preceding versions of the

core slot ID indexed active app-inst ID and core type arrays, to

allow matching the activating app-insts and the available core

slots according to the core type, in order to minimize the need for

core slot reconfigurations. For details on the core slot dynamic

reconfiguration, please see [2].

3. CONCLUSIONS
Optimizing dynamic resource allocation on parallel processing

resource pools shared among a number of internally parallelized

and/or pipelined applications is a complex challenge, particularly

when pursuing predictable, high performance (on-time processing

throughput) for each of the individual applications as well as

system-wide cost-efficiency, including in terms of efficient

resource usage. Moreover, the resource allocation is merely a

starting point for the overall challenge of orchestrating the

execution of multiple concurrent applications on a dynamically

shared parallel processing hardware: in addition, there needs to be

a solution for handling the dynamic parallel execution routines,

such as appropriately connecting the inter-task communications

among the tasks of the application instances, and keeping each

executing application task instance connected to its own

processing context, while such application task instances are

dynamically scheduled and placed on the shared pool of

processing cores.

Conventional computing paradigms have relied on system

software for handling the dynamic resource management etc.

parallel execution routines. However, by considering the data

volumes and processing intensiveness of handling the functions

per above in software when trying to scale up the number of

pooled processing resources as well as the number of applications

and their tasks sharing such resource pools, and while trying to

increase the frequency of resource allocation optimization, it

becomes clear that the system software would eventually begin

consuming a disproportionately high amount of the processing

capacity of the given pool, to the degree that plain scaling of

conventional architectures will lead not only to reducing resource

utilization efficiency, but eventually also to decreasing system-

wide application on-time processing throughput: after some point,

the incremental processing resources, applications and tasks

would begin to increase the overhead rate per a processing core so

severely that the incremental scaling units would begin to reduce

the app throughput of all the cores in the given pool by a factor

greater than they would increase the system-wide app processing

throughput capacity.

The presented architecture is designed to provide hardware logic

based approach to the above scalability challenge being faced

when seeking to improve both the individual application on-time

processing throughput as well as the system-wide cost-efficiency

and scalability of high volume, multi-user (e.g. cloud) computing.

To the description herein, the reference [3] adds descriptions of (i)

billing methods with incentive system for maximizing the amount

of processing resources available to meet processing load demand

peaks of the user applications sharing the given system, (ii) a

memory access system that both seeks to keep the on-chip fast-

access memory contents optimal w.r.t. to the presently active

application-task instances’ needs as well as uses the readiness of

app-task insts fast-access memory contents as a factor in optimally

scheduling such insts for execution, (iii) inter-application

performance isolation for inter-task communications, and (iv)

hardware logic based load balancers for a cluster of multi-stage

manycore processing systems per this paper.

4. REFERENCES
[1] Sandstrom, M. 2012. US patent application #13684473.

Application Load Adaptive Multi-stage Parallel Data

Processing Architecture.

[2] Sandstrom, M. 2012. US patent application #13717649.

Application Load and Type Adaptive Manycore Processor

Architecture.

[3] Sandstrom, M. 2014. US patent application #61934747.

Dynamic Parallel Execution.

[4] Sandstrom, M. 2014. US patent application #14318512.

Concurrent Program Execution Optimization.

http://www.throughputer.com/

