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ABSTRACT 

To enable maximizing on-time processing throughput across 

multiple internally pipelined/parallelized applications on 

dynamically shared manycore processors by eliminating system 

software overhead, a hardware automated implementation of the 

parallel execution system functions is presented. In the presented 

implementation scenario, the manycore processor hardware 

provides, besides the processing cores, IO and memories, the 

system functions of monitoring the applications’ processing loads, 

periodically (e.g. at microsecond intervals) allocating processing 

resources (cores) among the applications based on their 

processing load variations and contractual entitlements, 

prioritizing application task instances for execution, mapping 

selected task instances for execution on their assigned cores, and 

accordingly dynamically configuring the inter-task 

communications, IO and memory access subsystems (and on 

programmable hardware, the core slot types). The result pursued 

is a realtime application load and type adaptive manycore 

processor architecture, enabling scalable, secure, high-

performance and resource-efficient, dynamic parallel cloud 

computing. 

Categories and Subject Descriptors 

C.2.4 [Cloud computing] 

General Terms 

Algorithms, Management, Performance, Design, Economics, 

Experimentation, Security, Standardization, Theory. 

Keywords 

Dynamic parallel execution, application load adaptive processing, 

hardware-automation of operating system functions. 

1. INTRODUCTION 
Traditionally, advancements in computing technologies have 

fallen into two categories. First, in the field conventionally 

referred to as high performance computing, the main objective has 

been maximizing the processing speed of one given 

computationally intensive program running on a dedicated 

hardware comprising a large number of parallel processing 

resources. Second, in the field conventionally referred to as utility 

or cloud computing, the main objective has been to most 

efficiently share a given pool of computing hardware resources 

among a large number of user application programs. Thus, in 

effect, one branch of computing technology advancement effort 

has been seeking to effectively use a large number of parallel 

processors to accelerate execution of a single application program, 

while another branch of the effort has been seeking to efficiently 

share a single pool of computing capacity among a large number 

of user applications to improve the capacity utilization. 

However, there have not been major synergies between these two 

efforts; often, pursuing any one of these traditional objectives 

rather happens at the expense of the other. For instance, 

dedicating an entire parallel processor based (super) computer per 

individual application causes severely sub-optimal computing 

resource utilization, as much of the capacity would be idling much 

of the time. On the other hand, seeking to improve utilization of 

computing systems by sharing their processing capacity among a 

number of user applications using conventional technologies will 

cause non-deterministic, compromised performance for the 

individual applications, along with security concerns. As such, the 

overall cost-efficiency of computing is not improving as much as 

improvements toward either of the two traditional objectives 

would imply: traditionally, single application performance 

maximization comes at the expense of system utilization 

efficiency, while overall system efficiency maximization comes at 

the expense of individual application performance. 

There thus exists a need for a new parallel computing architecture, 

which, at the same time, enables increasing the speed of executing 

application programs, including through execution of a given 

application in parallel across multiple processor cores, as well as 

improving the utilization of the available computing resources, 

thereby maximizing the collective application processing on-time 

throughput for a given cost budget. Moreover, even outside 

traditional high performance computing, the application 

performance requirements will increasingly be exceeding the 

processing throughput achievable from a single CPU core, e.g. 

due to the practical limits being reached on the CPU clock rates. 

This creates an emerging requirement for intra-application parallel 

processing (at ever finer grades) also for mainstream programs. 

Notably, these internally parallelized enterprise and web 

applications will be largely deployed on dynamically shared cloud 

computing infrastructure. Accordingly, the emerging form of 

mainstream computing calls for technology innovation supporting 

executing large number of internally parallelized applications on 

dynamically shared parallel processing resource pools. 

Generally, dynamically optimizing resource usage in a large 

capacity parallel processing system among a large number of 

applications and their instances and tasks, in pursuing both 

predictable, high performance for each individual application as 

well as efficient system resource utilization, does present a 

complex problem, resolving which would consume plenty of the 

system’s resources if handled in software. It is not trivial to 

answer the question: To which application task instance should 

any given processing resource be assigned at any given time, to 

achieve optimal system-wide application processing throughput? 
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2. MULTI-STAGE PARALLEL 

PROCESSING ARCHITECTURE 

2.1 Overview 
To address the above challenges, this paper presents an 

architecture for extensible, application program load and type 

adaptive, multi-stage manycore processing systems (Fig. 1). The 

presented architecture takes the following approach to enable 

scaling the dynamic resource optimization for increasing numbers 

(and types) of pooled processing resources and application 

programs (apps), their instances (insts) and tasks sharing the 

pooled resources: 

1) The processing resources and app processing is partitioned 

into (manycore processor based) processing stages, which, per 

any given app, can be arranged to support various 

combinations of pipelined and parallelized processing. This 

brings the following benefits:  

a. The system has to support, per each processing stage, only 

one task per each of the apps dynamically sharing the 

system. At each processing stage though, there will be a 

dynamically optimized number of active insts of the local 

tasks of each app. The resource management for each 

stage is thus simpler than it would be for the full system, 

where there are multiple tasks per each app. 

b. The resource management is done independently for any 

given stage, which, besides being simpler due to there 

being just one task per app, limits the scope of the 

function, adding to the scalability of the architecture. Note 

that the dynamic resource optimization at each processing 

stage of the system, while done independently, is adaptive 

to the apps’ processing load variations (incl. the 

processing input volumes received by any given stage 

from the other stages/external network inputs), so that the 

per-stage distributed dynamic resource management still 

achieves full system scope resource usage optimization. 

2) The processing core resource management at each manycore 

based processing stage is further partitioned as follows: 

a. First, the allocation of the cores (of the local manycore 

processor) among the apps (i.e. their local tasks at that 

stage) is optimized periodically, based (in part) on the 

input processing load variations among the apps. 

b. Based on such core allocations, highest priority insts of 

the local app tasks are assigned for processing on a 

number of cores allocated to each given app. To minimize 

task switching overhead, continuing app-task insts are 

kept at their existing cores, and activating app-task insts 

are mapped to cores occupied by de-activating app-task 

insts -- on processors supporting multiple (dynamically 

reconfigurable) core types, so that the core types 

demanded by incoming app-task insts match, to the extent 

possible, the core type of their assigned core slots 

occupied by outgoing app-task insts. 

By partitioning the system-wide dynamic resource management 

functionality per above, the individual functions of resource 

management for dynamically shared manycore arrays become 

feasible (e.g. in terms complexities of data structures needed) for 

direct hardware (e.g. FPGA) implementation. The all-hardware 

implementation of such system functions further adds to the 

scalability of the architecture (per Figs. 1-5) via system software 

overhead reduction. Since the hardware automated system 

functions do not consume any of the system processor capacity no 

matter how frequently the capacity is reallocated, and since the 

hardware algorithms run in just a few clock cycles, as well as 

since hardware automated task switching for the processor cores is 

non-visible to software, this architecture also enables re-

optimizing the system resource assignment as frequently as 

needed to accommodate the apps’ processing load variations. The 

main structures and elements of the architecture, and their 

operation, are described in the following. 

2.2 Multi-stage Pipelined/Parallel Processing 
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Figure 1. Multi-stage manycore processor system architecture. 

General operation of the application load adaptive, multi-stage 

parallel data processing system per FIG 1., focusing on the main 

I/O data flows, is as follows: The system provides data processing 

services to be used by external parties (e.g. by client apps) over 

networks. The system receives data packets from its users through 

its network input ports, and transmits the processing results to the 

relevant parties through its network output ports. Naturally the 

network ports of the system of Fig. 1 can be used also for 

connecting with other resources and services (e.g. storage, data 

bases etc.) as/if necessary to produce the requested processing 

results. The app tasks executing on the entry stage manycore 

processor are typically of ‘master’ type for parallelized/pipelined 

apps, i.e., they manage and distribute the processing workloads 

for ‘worker’ type tasks running on the worker stage manycore 

processing systems (note that the processor system hardware is 

similar for all instances of the processing system). The insts of 

master tasks typically do pre-processing (e.g. message/request 

classification, data organization) and workflow management 

based on input packets, and then typically involve appropriate 

worker tasks at their worker stage processors to perform the data 

processing called for by the given input packet(s), potentially in 

the context of and in connection with related input and/or stored 

data elements. (The processors can have access to system 

memories through interfaces additional to the IO ports shown in 

the Figs.) Accordingly, the master tasks typically pass on the 

received data units (using direct connection techniques to allow 

most of the data volumes being transferred to bypass the actual 

processor cores) through the inter-stage packet-switch (PS) to the 

worker stage processors, with the destination app-task inst 

identified for each data unit.  
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2.3 Inter-Stage Data Flow and Processing 

Load Balancing 
The any-to-any connectivity among the app-tasks of all the 

processing stages provided by the PS (Fig.1) enables organizing 

the worker tasks (located at the array of worker stage processors) 

flexibly to suit the individual needs (e.g. task inter-dependencies) 

of any given app on the system: the worker tasks can be arranged 

to conduct the work flow for the given app using any desired 

combinations of parallel and pipelined processing. E.g., it is 

possible to have copies of a particular (data parallelizable) task of 

a given app located on any number of the worker stages in the 

architecture per Fig. 1, to provide a desired number of parallel 

copies of a given app task. The set of apps configured to run on 

the system have their tasks identified by (intra-app) IDs according 

to their descending order of relative workload levels. The sum of 

the intra-app task IDs (with each ID representing the workload 

ranking of its task within its app) of the app-tasks hosted at any 

given processing system is equalized by appropriately locating the 

tasks of differing ID#s, i.e. of differing workload levels, across the 

apps for each processing stage, to achieve optimal overall load 

balancing. For instance, in case of four worker stages, if the 

system is shared among four apps and each of that set of apps has 

four tasks, for each app of that set, the busiest task (i.e. the worker 

task most often called for or otherwise causing the heaviest 

processing load among tasks of the app) is given task ID#0, the 

second busiest task ID#1, the third busiest ID#2, and the fourth 

ID#3. To balance the processing loads across the apps among the 

worker stages of the system, the worker stage #t gets task ID#t+m 

(rolling over at 3 to 0) of the app ID #m (t=0,1,…T-1; 

m=0,1,…M-1). In this example scenario of four apps, four worker 

tasks per app as well as four worker stages, the above scheme 

causes the task IDs of the set of apps to be placed at the 

processing stages per Tbl. 1 below: 

App ID# m (to right) 
0 1 2 3 

Worker stage# t (below) 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

Table 1. 

As seen in the example of Tbl. 1, the sum of the task ID#s (with 

each task ID# representing the workload ranking of its task within 

its app) is the same for any row i.e. for each worker stage. 

Applying this load balancing scheme for differing numbers of 

processing stages/tasks and apps is straightforward based on this 

example, so that the overall task processing load is to be, as much 

as possible, equal across all worker-stage processors of the 

system. Advantages of such schemes include optimal utilization 

efficiency of the processing resources and minimizing the 

possibility or effects of any of the worker-stage processors 

forming system-wide performance bottlenecks. 

2.4 Application-Load Adaptive Manycore 

Processor Architecture 
From here, we continue by exploring the internal structure and 

operation of a given processing stage, a high level functional 

block diagram of which is shown in Fig. 2 below. 
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Figure 2. Top-level diagram for any of the processing stages in 

the multi-stage parallel processing system in Fig. 1. 

Per Fig. 2, any of the processing stages of the system (Fig. 1) has, 

besides the manycore processor system (Figs. 3-5), an RX logic 

subsystem, which connects input data packets from any of the 

input ports to any of the processing cores of the processing stage, 

according to at which core the indicated destination app-inst of 

any given packet may be executing at any given time. Moreover, 

the monitoring of the buffered input data load levels per each 

destination app-inst at the RX logic subsystem enables optimizing 

the allocation of processing core capacity of the local manycore 

processor among the app tasks hosted on that processing stage. 

Internal elements and operation of the application load adaptive 

manycore processor system are illustrated in Fig. 3. Since there is 

one task per app per processing stage (though there can be 

multiple insts of any app-task at its local processing stage), the 

term app-inst in the context of a single processing stage means an 

instance of an app-task hosted at the processing stage under study. 
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Figure 3. Application load adaptive manycore processor for 

the processing stage per Fig. 2 (within the multi-stage parallel 

processing system per Fig. 1). 

Fig. 3 provides a block diagram for the manycore processor 

system dynamically shared among insts of the locally hosted app-

tasks, with capabilities for application processing load adaptive 

allocation of the cores among the apps, as well as for dynamically 

reconfigured IO and memory access by the app-task insts. Any of 

the cores of a processor per Fig. 3 can comprise any types of 
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processing hardware resources, e.g. central processing units 

(CPUs), graphics processing units (GPUs), digital signal 

processors (DSPs) or application specific processors (ASPs) etc., 

and in programmable logic (FPGA) implementation, the core type 

for any core slot is furthermore reconfigurable per expressed 

demands of its assigned app-task. App specific logic modules at 

the RX module (Fig. 2) write their associated apps’ capacity 

demand indicators, core-demand-figures (CDFs), to the controller 

of the local manycore processor. The CDFs express how many 

cores their associated app is presently able to utilize for its ready 

to execute insts. Each app’s capacity demand expressions for the 

controller further include a list of its ready insts in an execution 

priority order. Criteria for prioritizing app-insts for execution 

includes whether a given inst has available to it such input data 

and fast-access memory contents that enable it to execute at the 

given time. The hardware logic based controller module within 

the processor system, through a periodic process, allocates and 

assigns the cores of the processor among the set of apps and their 

insts (in part) based on the CDFs of the apps. This app-inst to core 

assignment process is exercised periodically, at intervals such as 

once per a defined number (e.g. 1024) of processing core clock or 

instruction cycles. Fig. 4 below provides a data flow diagram for 

the hardware implemented controller, which periodically, e.g. 

once per microsecond, selects app-insts for execution, and places 

each selected-to-execute app-inst to one of the cores of the local 

manycore processor. As shown in Figs. 2 and 3, the app-inst to 

core mapping info also directs muxing of input data from the RX 

buffers of an appropriate app-inst to each core of the array, as well 

as muxing of the read control signals from the core array to the 

RX buffers of the app-inst that is assigned for any given core at 

any given time.  
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Figure 4. App-inst to core mapping process for the manycore 

processor per Fig. 3. 

Fig. 4 presents major phases of the app-inst to core mapping 

process, used for maximizing the value-add of the app processing 

throughput of the manycore fabric shared among a number of 

apps. This process, periodically selecting and mapping the to-be-

executing insts of the set of app-tasks to the array of processing 

cores of the local processor, involves the following steps: 

 

 

(1) allocating the array of cores among the set of apps, based on 

CDFs and contractual entitlements of the apps, to produce for 

each app a number of cores allocated to it (between the 

current and the next run of the process); and 

(2) based at least in part on the allocating, for each given app that 

was allocated one or more cores:  

(a) selecting, according to the inst priority list of the given 

app, the highest priority insts of the app for execution 

corresponding to the number of cores allocated to the 

given app, and 

(b) mapping each selected app-inst to one of the available 

cores of the array, to produce,  

i) per each core of the array, an identification of the 

app-inst that the given core was assigned to, and 

ii) per each app-inst selected for execution on the fabric, 

an identification of its assigned core. 

The periodically produced and updated outputs of the controller 

process are used for periodically re-configuring connectivity 

through the RX subsystem (Fig. 2) as well as the fabric memory 

access subsystem (Fig. 5). 

2.5 Fabric Memory Access Subsystem for 

Dynamically Allocated Manycore Processor 
Fig. 5 and related specifications below, along with the reference 

[1] (in particular its figures 8-10) describe the manycore processor 

on-chip memory access subsystem providing non-blocking 

processing memory access (incl. for program instructions and 

interim processing results) between the app-insts dynamically 

assigned to cores of the array and the app-inst specific memories 

at the memory array of the core fabric. The capabilities per Fig. 5 

provide logic, wiring, memory etc. system resource efficient 

support for executing any app-inst at any core within the 

processor at any given time (as controlled by the controller that 

periodically optimizes the allocation and assignment of cores of 

the array among the locally hosted app-insts), while keeping each 

given app-inst transparently connected to its own (instruction and 

interim data containing) memory block at memory array. 
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Figure 5. Dynamically reconfigured access by app-insts 

dynamically assigned for execution at the core array to app-

inst specific memory blocks within the core fabric. 

Per Fig. 5, to direct write and read control access from the array of 

cores to the array of app-inst specific memories, the controller 

identifies, for app-inst specific muxes at the cross-connect (XC) 
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between the core array and memory array, the presently active 

source core (if any) for write and read control access to each given 

app-inst specific segment within the fabric memory array. 

Similarly, to direct read access by the array of cores to the array of 

app-inst specific memories, the controller identifies, for core 

specific muxes at the XC, the memory segment of the app-inst 

presently assigned for each given core of the array. Based on the 

control by the controller for a given core indicating that it will be 

subject to an app-inst switchover, the currently executing app-inst 

is made to stop executing and its processing state from the core is 

backed up to the segment of that exiting app-inst at the memory 

array, while the processing state of the next app-inst assigned to 

execute on the given core is retrieved to the core from the memory 

array. Cores not indicated by controller as being subject to app-

inst switchover continue their processing uninterruptedly through 

the core allocation period transitions. Note that applying of 

updated processing core ID# configurations for the app-inst 

specific mux:s at the XC and app-inst ID# configurations for the 

core specific mux:s of the XC (Fig. 5) as well as of the RX logic 

(Fig. 2) can be safely and efficiently done by the hardware logic 

without software involvement, since none of the app-insts needs 

to know whether or at which core itself or any other app-inst is 

executing within the system at any given time. Instead of relying 

on knowledge of the their respective previous, current (if any at a 

given time) or future execution cores by either the application or 

any system software, the architecture enables flexibly running any 

insts of any app-tasks at any core of their local processing stages. 

2.6 Specifics of the Application Instance to 

Core Assignment Process  

2.6.1 Hardware automation of dynamic resource 

management 
To enable rapidly re-optimizing the allocation and assignment of 

the system processing core capacity among the insts and tasks of 

the apps sharing the processing system per Fig. 1 according to the 

realtime processing load variations among the app-task-insts, the 

dynamic resource management processes are implemented by 

hardware logic in the manycore processor controller modules per 

Fig. 4. Similar processes are run (independently) for each of the 

processing stages of a given multi-stage manycore processor 

system per Fig. 1. The application processing load adaptive, 

dynamic core assignment process per Fig. 4 comprises algorithms 

for core allocation, app-inst selection and mapping, as detailed in 

the following. 

2.6.2 Algorithm for allocating the cores among the 

applications  
Objectives for the core allocation algorithm include maximizing 

the processor core utilization (i.e., generally minimizing, and so 

long as there are ready app-insts, eliminating, core idling), while 

ensuring that each app gets at least up to its entitled (e.g. a 

contract based minimum) share of the processor core capacity 

whenever it has processing load to utilize such amount of cores. 

Each app sharing a given manycore processor (Fig. 3) is specified 

its entitled quota of the cores, at least up to which number of cores 

it is to be allocated whenever it is able to execute on such number 

of cores in parallel. Naturally, the sum of the apps' core 

entitlements (CEs) is not to exceed the total number of core slots 

in the given processor. Each app on the processor gets from each 

run of the core allocation algorithm: 

(1) at least the lesser of its (a) CE and (b) core demand figure 

(CDF) worth of the cores; plus 

(2) after condition (1) is met for all apps sharing the processor, 

as many additional cores to match its CDF as is possible 

while maintaining fairness among apps whose CDF is not 

fully met; plus  

(3) the app's fair share of any cores remaining unallocated after 

conditions (1) and (2) are met for all the apps. 

This algorithm allocating the cores to apps runs as follows: 

(i) First, any CDFs by all apps up to their CE of the cores within 

the array are met. E.g., if a given app #P had its CDF worth 

zero cores and entitlement for four cores, it will be allocated 

zero cores by this step (i). As another example, if a given app 

#Q had its CDF worth five cores and entitlement for one core, 

it will be allocated one core by this stage of the algorithm. 

However, to ensure that each app-task will be able at least to 

communicate at some defined minimum frequency, the step (i) 

of the algorithm allocates for each app, regardless of the 

CDFs, at least one core once in a specified number (e.g. 

sixteen) of the core allocation periods. 

(ii) Following step (i), any processing cores remaining 

unallocated are allocated, one core per app at a time, among 

the apps whose CDF had not been met by the amounts of 

cores so far allocated to them by preceding iterations of this 

step (ii) within the given run of the algorithm. For instance, if 

after step (i) there remained eight unallocated cores and the 

sum of unmet portions of the app CDFs was six cores, the app 

#Q, based on the results of step (i) per above, will be allocated 

four more cores by this step (ii) to match its CDF. 

(iii) Following step (ii), any processing cores still remaining 

unallocated are allocated among the apps evenly, one core per 

app at time, until all the cores of the array are allocated among 

the set of apps. Continuing the example case from steps (i) 

and (ii) above, this step (iii) will allocate the remaining two 

cores to certain two of the apps (one for each). Apps with zero 

existing allocated cores, e.g. app #P from step (i), are 

prioritized in allocating the remaining cores by this step (iii). 

Moreover, the iterations of steps (ii) and (iii) per above are started 

from a revolving app ID# within the set, so that the app ID# to be 

served first by these iterations is incremented by one (and 

returning to 0 after reaching the highest app ID#) for each 

successive run of the algorithm. 

Accordingly, all cores of the array are allocated on each run of the 

above algorithm according to apps’ processing load variations 

while honoring their contractual entitlements. I.e., the allocating 

of the array of cores by the algorithm is done in order to minimize 

the greatest amount of unmet demands for cores (i.e. greatest 

difference between the CDF and allocated number of cores for 

any given app) among the set of apps, while ensuring that any 

given app gets its CDF at least within its CE met on each 

successive run of the algorithm. 

2.6.3 Algorithm for assigning app-insts for the cores 
Following the allocation of the array of cores among the apps, for 

each app on the processor that was allocated one or more cores by 

the latest run of the core allocation algorithm, the individual 

ready-to-execute app-insts are selected and mapped to the number 

of cores allocated to the given app. One of the selected app-insts 

is assigned per one core by each run of this algorithm. 
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The app-inst to core assignment algorithm for each given app 

begins by keeping any continuing app-insts, i.e., app-insts 

selected to run on the core array both on the present and the next 

core allocation period, mapped to their current cores. After that 

rule is met, any newly selected insts for the given app are mapped 

to available cores. Assuming that a given app was allocated k (a 

positive integer) cores beyond those used by its continuing app-

insts, k highest priority not-yet-mapped app-insts of the app are 

chosen to be mapped to the remaining available cores allocated to 

the given app, starting from the insts that are ready-to-execute. 

When the app-inst to core mapping module of the controller (Fig. 

4) gets an updated list of selected insts for the apps (following a 

change in either or both of core to app allocations or app-inst 

priority lists of one or more apps), it identifies from them the 

following: 

I. The set of activating, to-be-mapped, app-insts, i.e., selected 

app-insts that were not mapped to any core by the previous 

run of the placement algorithm; 

II. The set of deactivating app-insts, i.e., app-insts that were 

included in the previous, but not in the latest, selected app-

inst lists; and 

III. The set of available cores, i.e., cores which in the latest 

assignment table were assigned to the set of deactivating app-

insts (set II above). 

The sets I and II can be obtained as the incoming and outgoing 

app-insts for each of the cores for which the two are different. The 

app-inst to core assignment algorithm uses the info from the 

above sets to map the active app-insts to cores of the array so as to 

keep the continuing app-insts executing on their present cores, 

thus maximizing the utilization of the core array for user app 

processing, and by mapping the individual app-insts within the set 

I of activating app-insts for processing at the set III of available 

cores (according to their increasing app-inst and core IDs). 

Moreover, regarding placement of activating app-insts (set I as 

discussed above) on processors with reconfigurable core slots, the 

assignment algorithm seeks to minimize the amount of core slots 

for which the activating app-inst demands a different execution 

core type than the deactivating app-inst did. I.e., the app-inst to 

core assignment algorithm will, to the extent possible, place 

activating app-insts to such core slots (within the core array of the 

local processor) where the deactivating app-inst had the same 

execution core type. E.g., activating app-inst demanding the DSP 

type execution core will be placed to the core slots where the 

deactivating app-insts also had run on DSP type cores. This sub-

step in placing the activating app-insts to their target core slots 

uses as one of its inputs the new and preceding versions of the 

core slot ID indexed active app-inst ID and core type arrays, to 

allow matching the activating app-insts and the available core 

slots according to the core type, in order to minimize the need for 

core slot reconfigurations. For details on the core slot dynamic 

reconfiguration, please see [2]. 

3. CONCLUSIONS 
Optimizing dynamic resource allocation on parallel processing 

resource pools shared among a number of internally parallelized 

and/or pipelined applications is a complex challenge, particularly 

when pursuing predictable, high performance (on-time processing 

throughput) for each of the individual applications as well as 

system-wide cost-efficiency, including in terms of efficient 

resource usage. Moreover, the resource allocation is merely a 

starting point for the overall challenge of orchestrating the 

execution of multiple concurrent applications on a dynamically 

shared parallel processing hardware: in addition, there needs to be 

a solution for handling the dynamic parallel execution routines, 

such as appropriately connecting the inter-task communications 

among the tasks of the application instances, and keeping each 

executing application task instance connected to its own 

processing context, while such application task instances are 

dynamically scheduled and placed on the shared pool of 

processing cores.  

Conventional computing paradigms have relied on system 

software for handling the dynamic resource management etc. 

parallel execution routines. However, by considering the data 

volumes and processing intensiveness of handling the functions 

per above in software when trying to scale up the number of 

pooled processing resources as well as the number of applications 

and their tasks sharing such resource pools, and while trying to 

increase the frequency of resource allocation optimization, it 

becomes clear that the system software would eventually begin 

consuming a disproportionately high amount of the processing 

capacity of the given pool, to the degree that plain scaling of 

conventional architectures will lead not only to reducing resource 

utilization efficiency, but eventually also to decreasing system-

wide application on-time processing throughput: after some point, 

the incremental processing resources, applications and tasks 

would begin to increase the overhead rate per a processing core so 

severely that the incremental scaling units would begin to reduce 

the app throughput of all the cores in the given pool by a factor 

greater than they would increase the system-wide app processing 

throughput capacity. 

The presented architecture is designed to provide hardware logic 

based approach to the above scalability challenge being faced 

when seeking to improve both the individual application on-time 

processing throughput as well as the system-wide cost-efficiency 

and scalability of high volume, multi-user (e.g. cloud) computing. 

To the description herein, the reference [3] adds descriptions of (i) 

billing methods with incentive system for maximizing the amount 

of processing resources available to meet processing load demand 

peaks of the user applications sharing the given system, (ii) a 

memory access system that both seeks to keep the on-chip fast-

access memory contents optimal w.r.t. to the presently active 

application-task instances’ needs as well as uses the readiness of 

app-task insts fast-access memory contents as a factor in optimally 

scheduling such insts for execution, (iii) inter-application 

performance isolation for inter-task communications, and (iv) 

hardware logic based load balancers for a cluster of multi-stage 

manycore processing systems per this paper. 
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