
A Multi-Paradigm Approach to Teaching Students
Embedded Systems Design using FPGAs and CPLDs

David C. Dyer
School of Engineering, University of Warwick

Coventry, Warwickshire, CV3 4AL
d.c.dyer@warwick.ac.uk

Yan Lin Aung
CHiPES Research Centre, Nanyang Technological
University, 50 Nanyang Drive, Singapore 637553

layan@ntu.edu.sg

ABSTRACT
To create optimal embedded electronic systems, it is essential to
ensure all implementation options are considered, and students of
electronics and computer engineering must be educated in
hardware, software and firmware.

We begin by reviewing in an educational context various
implementation techniques. These include commercial
microcontrollers, custom instruction set architectures (ISA), Field
Programmable Gate Arrays (FPGAs) for ‘soft-core’ processors
and dedicated digital ‘engines’, as well as Complex
Programmable Logic Devices (CPLDs) for interface management.

Thereafter, we describe our work to create a platform that
incorporates the above but is extended to include software
development and tools. Regarding ISAs, we use an FPGA
configured with a soft-core ARM Cortex-M1 32-bit processor but
also introduce a custom hybrid RISC/CISC 12-bit processor
called VIP. This helps students explore and compare multiple
soft-core implementation issues. Furthermore, unlike most
proprietary platforms, we can provide students with the HDL code
of all our peripherals and interfaces. Especially those for the
address and data lines used communicate with devices on our
associated custom Teaching Auxiliary Board (TAB); which itself
uses a CPLD programmed to provide features such as bus
handshake, protocol conversions, timers, interrupts and simulation
of ‘slow memory locations’.

We believe that our holistic approach provides exceptional
learning opportunities to show how implementations may be
partitioned across FPGAs and CPLDs acting as dedicated
programmed logic or programmable soft-core processors.

Categories and Subject Descriptors

K.3.2 Computer science education, Information systems education

General Terms

Design, Experimentation

Keywords
FPGA, soft-core, CPLD, microcontroller, ADC, DAC, interfacing,
embedded

1. INTRODUCTION
It is with educators of ‘novice’ students in mind that we have
prepared this paper and recognize fully that commercial product
development has additional constraints not described herein.

Traditionally, teachers describe sequentially operational principles
of electronic devices but how best to combine them concurrently
in practical applications can be much more challenging to explain
and there has to be a balance between abstraction and detail. For
example, a floating-gate field-effect transistor is at the heart of
‘flash’ memory but knowing the physical mechanisms alone does
not mean that one can store encoded pictures.

‘Education’ in engineering must include tuition on concepts,
applications, implementations and deployment – with due regard
to the psychology of learning. These are all essential if students
are to become creative designers. Many opportunities are afforded
in systems-level design by the abundance of programmable
devices but it is the wise combination of devices and techniques
that underpins profitable commercial exploitation. To segregate
topics, and present them to students in isolated classes for recall
alone does not develop the skills demonstrated by experienced
inter-disciplinary designers.

The diversity of field programmable devices and their rapidly
changing parameters means that teachers can present too much
material for novice students to assimilate well. Topics presented
in a series of lectures have to be applied concurrently and
eventually perhaps subconsciously. However, like riding a
bicycle, once learned it is nearly impossible to forget.
Consequently, experienced designers and educators can find it
difficult to remember what it was like not to ‘know’ the myriad of
details that contribute to robust embedded systems design.

Much of the terminology in common use is context sensitive and
has mutated over time. For example, the term ‘field’ was used to
differentiate ‘user’ programmability from unalterable behaviour
defined during fabrication. Where ‘programming’ is now done, it
what way, and by whom, and for what purpose must be explained
in detail to students.

We believe educators have to make programmable technologies
more amenable to understanding so they may be better applied in
creative ways. In our work, we have tried to address these
challenges and satisfy multiple and diverse educational
expectations to improve the overall ‘student experience’.

The TAB platform and environment has been used since 2012 by
a total of 125 2nd year students of Computer Engineering at NTU.
While the VIP ISA has been used each year by approximately 350
1st year students. VIP was introduced in 2013 at the University of
Warwick to 140 students and adoption of TAB is being planned.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGAWorld'14, Sept 9-11, 2014, Stockholm and Copenhagen
Copyright © 2014 ACM 978-1-4503-3130-2...$15.00.

2. REVIEW OF FIELD PROGRAMMABLE
TECHNOLOGIES AS RELATED TO
EDUCATIONAL NEEDS
The benefits of various field programmable technologies to
commercial product development and manufacture are not
necessarily the same as those in education. A multitude of issues
of commercial concern do not impact teachers at all, such as
supply chain management and warranty provisions. Experienced
designers understand very well the capabilities of each device and
how to achieve the specified functional requirements subject to
constraints like overall cost and development time. Expressions
like ‘big memory’ are understood relative to previously developed
products but have little, or no, meaning in isolation to students.

In this section, we review briefly field programmable technologies
and highlight key parameters. This serves to identify some of the
gaps between the commercial and educational communities.

2.1 Confusion and Misrepresentation
When devices have names that sound similar they are easily
confused, for example, thermostat vs. thermocouple and
thermistor vs. thyristor. Similarly, for the terms microcomputer vs.
microcontroller. Students who refer to web-based definitions of
microcontrollers may adopt incorrect qualitative descriptions.
Many misrepresentations are perpetuated because undated legacy
lecture material is available.

Novice students may fail to recognize when downloaded material
is so out of date that it is no longer applicable. For example, one
has only to search the web for ‘JK flip-flop’ to discover a wealth
of descriptions stating the behaviour but rarely explaining it is no
longer the foundation of sequential digital designs. Hence
students may not know what to believe.

2.2 EPROM to Flash and others
Erasable Programmable Read Only Memories (EPROMS) require
exposure to ultraviolet light to erase all data. But how many
program/erase cycles are permitted? How is the retention time
affected by temperature? What is the cost per bit? Such questions
are not often addressed by teachers who instead may rather
consider only capacity or changes in capacity over time.

In any case, EPROMs are used only to support legacy designs and
not new developments where flash memories are commonplace.
Even for these, the focus may be too easily placed on capacity and
data transfer rate, often leaving aside endurance and retention.
Perhaps what should be taught are the modelling and statistical
methods used to predict the probability of data failure as a
function of temperature or, from a practical point of view, the
steps needed to write data in blocked pages.

2.3 From PLAs to CPLDs
Programmable Logic Arrays (PLA) and later, in 1978,
Programmable Array Logic (PAL) from Monolithic Memories
were field programmable and able to replace ‘random logic’. They
used one-time fusible links. In textbooks and the classroom the
fuses are often assumed ‘ideal’ when in fact there are problems
with long-term reliability.

Over time, the fabrication technologies have changed and the
complexity has increased from AND/OR arrays to include
registered outputs and macro-cells. However, the flash-based
technology is often limited to about 100 re-programming cycles

and it is too easily assumed similar to 100,000 cycles allowed for
some flash memories. Of more practical significance is the ability
to perform in-system re-programming.

As the functionality grew the use of programming languages such
as ABLE and PALASM gave way to Verilog and VHDL. Indeed
without Hardware Description Languages and synthesis tools,
Complex Programmable Logic Devices (CPLDs) are
‘inaccessible’. But perhaps what is most needed is an
understanding of the applications to which CPLDs rather than
FPGAs are best suited and vice versa.

2.4 Microcontrollers – RISC or CISC?
Free-standing microcontrollers with flash memory for code
storage represent another field-programmable technology but the
capabilities and complexity can be misrepresented in educational
environments. This may be due to limited funding and
inappropriate reuse of dated teaching materials. Regrettably, it
may also be to the dated knowledge of teachers in some
circumstances. Qualitative descriptions such as ‘small’ or ‘fast’
can be the most misleading and give students false impressions
and expectations. For example, what is meant by a ‘high-speed’
microcontroller, as overall performance is influenced by the
instruction set architecture and not merely the clock frequency.

The terms Reduced Instruction Set Computer (RISC) and its
retrospective counterpart, Complex Instruction Set Computer
(CISC), are confusing to students who have no personal historical
perspective. RISC should be taught in the context of load/store
architectures and not the number of mnemonics. Also RISC is
frequently presented as better than CISC but is untrue. CISC
ISAs with memory-to-memory operations can solve some
problems related to atomicity [1] which is crucial in some real
products.

As industry begins to use highly-integrated heterogeneous multi-
core microcontrollers in safety-critical applications, educators
need to ensure students have a thorough understanding of all their
characteristics.

2.5 Field Programmable Gate Arrays -
FPGAs
Since the creation of FPGAs by Xilinx in about 1984, a plethora
of devices of this genre have been produced by different
manufacturers and it is becoming increasingly convenient for
educators to teach digital design at a level of abstraction that is
agnostic to the detailed behaviour of ‘target’ devices.

In taught classes, the challenge is usually to create a design but in
commercial applications the time and cost of full characterization
and verification can be dominant. For example, the viability of a
Reed-Solomon Forward Error Correction (FEC) unit in photonic
networks may depend critically on worst-case timing delays. Once
proven, the ‘floorplan’ will be locked to avoid unnecessary
regression testing. These aspects are needed for a real product but
may not be taught.

Also of commercial importance are the consequences of selecting
static RAM-based FPGAs vs. distributed flash vs. immunity to
single point failures. While it is fully understood that novice
students have much to learn, keeping commercial needs in mind
will help guide curricula development. Therefore, the integration
of hard-core processors vs. soft-core processors is worthy of more
classroom discussion. If ‘floorplans’ are locked to ensure timing

closure, the flexibility afforded by embedded soft-core processors
to monitor and manage subsystems can be attractive. Changes in
functionality are then provided via programs written in high-level
languages like ‘C’ rather than via re-synthesis.

3. LEARNING OBJECTIVES

Across many different taught classes, high-level objectives are to
provide students with skills needed to create innovative and
effective solutions to problems broadly associated with embedded
and cyber physical systems. This encompasses a) electronic
peripheral and interface hardware circuits, b) embedded real-time
software running on a processor, c) dedicated firmware and d)
possibly custom digital elements defined via a hardware
description language.

Depending on the application, robust, fault-tolerant, high-integrity
or safely-critical techniques may also be needed but these follow
understanding of principles of functional decomposition, physical
composition, construction and testing.

Full-custom application-specific integrated circuits (ASICs) may
be most appropriate for some high-volume or intrinsically secure
applications but field programmable gate arrays (FPGAs) and
other programmable logic devices, offer unique possibilities for
many solutions. However, commercial success increasingly
depends upon the integration of different principles that are
traditionally taught independently.

3.1 Multiple Paradigms
Our platform, described in detail in Section 5, incorporates an
FPGA and CPLD together with associated components and
programming environments. They are intended to support classes
from years 1 to 3 (or 4) of BSc degree programs, such as
Computer Engineering, Electronics or Information Engineering.
The concepts provide opportunities for improved holistic
understanding of principles that may be developed further to
improve commercial opportunities. The expected classes include.

 Introduction to Instruction Set Architecture (ISA)
use and design.

 Simplicity, or complexity, of ISA implementation
via Hardware Description Languages (HDLs) with
FPGA targets. Leading to Advanced ISA design
and implementation with focus on low-power.

 Hardware peripheral interfacing and dedicated
peripheral implementations in HDLs for FPGAs

 Real-time programming in assembler and ‘C’.

 Use of ‘Intellectual Property’ and integration with
proprietary busses and architectures.

 Schedulers, Kernels and Operating systems.
Particularly, uC/OS III and ThreadX

 Compiler design and program language translation.

4. WHICH SOFT-CORE PROCESSOR ?
The efficient use of FPGA resources is a commonly taught but as
the number of Logic Elements (LEs) has increased, more and
more sophisticated designs can be implemented. This is
particularly true when considering the instruction set architecture

of a processor that is to be implemented in an FPGA. While some
entities in the programmer’s model like registers can be mapped
efficiently to a group of LEs, the logic needed to decode
instructions encourages the creation of RISC-like ISAs. However,
this is contrary to the complexity of now commonly found in ISAs
such as Thumb-2 [2] or PowerISA [3].

Another counter argument relates to the cost in terms of memory
size and the energy needed to fetch many RISC-like instructions
over fewer CISC-like instructions.

4.1 Some Commercial Offerings
We recognize that FPGA manufactures offer encrypted soft-core
processors with different ISAs. These include Nios-II from Altera
and MicroBlaze from Xilinx. Each has features that are of
potential educational benefit but they are neither simple to
describe to novice students nor support migration to commercial
microcontrollers.

However, we regard essential characteristics to be a) simplicity of
introduction, b) representation of multiple ISA paradigms and c)
ease of upward migration. Also, we wish to enable students to use
commercial integrated development environments (IDEs) that are
representative of commercial practices.

4.2 Selection of DE0 Host and ARM soft-core
Cortex-M1 processor
We surveyed available products and selected an off-the-shelf
circuit board called the DE0 from Terasic [4] that contains a
Cyclone III FPGA made by Altera. There were four main reasons:
a) allows ARM soft-core Cortex-M1 [5] to be deployed, b) has
numerous on-board input/output devices, c) has sufficient
input/output connections to support a parallel interface bus to our
custom Teaching Auxiliary Board. We wanted to provide a
migration path to other similar microcontrollers from an
established ‘ecosystem’ and judged that ARM Cortex-M1 was
optimal.

An immediate possibility was to use the Cortex-M0 processor that
is part of a ‘DesignStart’ kit from ARM. It is provided as a
synthesizable, obfuscated Verilog netlist for academics, starts-up
and ad-hoc technology teams [6]. Martos et al. implemented this
-M0 in a Xilinx FPGA based Nexys2 board from Digilent and
validated the functionality of the processor in hardware by
observing the values on the data read bus during the memory
fetches with ChipScope Pro on-chip logic analyzer tool from
Xilinx with an LED toggling at programmed intervals [7].
However, one major limitation of the Cortex-M0 Design-Start
processor is that it lacks the hardware debugger interface for
seamless compilation of the software applications, downloading,
and debugging (e.g. single stepping, inserting breakpoints,
watchpoints) of the hardware.

Consequently, we licensed a soft-core Cortex-M1 from ARM with
debug capability and a USB to DE0 interface, which enabled a
synthesized M1 to be downloaded to the Cyclone III FPGA (with
49% of LEs used) and the application code to be downloaded to
associated RAM, but also a virtual JTAG interface to support
single-step and trace using IDEs from Keil.

Figure 3 shows the physical appearance of the DE0 and Figure 4
depicts the functional elements.

4.3 Justification for VIP – A 12-Bit processor
The soft-core Cortex-M1 uses ‘Thumb' instructions and programs
written in ‘C’ can easily be re-complied for other more capable
ARM processors such as the M3 and M4 that use Thumb-2.
However, we believe that working at assembly level with the M1
is still too challenging as an entry point for novices.
Consequently, we have designed a 12-bit processor called VIP
from Various Instruction Paradigms. Its ISA is designed to aid
understanding in a) nature of low-level instructions, b) their uses
when combined b) how the ISA may be simulated in ‘C’, d)
compiler techniques, and e) how it may be defined in a HDL and
synthesized into an FPGA.

Using VIP avoids important issues related to potential copyright
infringement.

Graphical simulators for VIP have been written and used since
January 2012 in 1st year classes in the School of Computer
Engineering at NTU and since October 2013 in 2nd and 3rd year
classes in School of Engineering at the University of Warwick,
UK. The core of these is written a very efficient form in ’C’ and is
available for discussion in class to explore the effects of different
coding styles.

Some of VIP’s features are listed below but a full description is
available [8] and [9].

 The ISA is simple but not trivial.

 Unique feature - Memory Mode Flag in status register
selects either Von-Neumann mode (default) or Harvard.

 Addressing modes for destination, d, and source,s, are
R0, R1, R2, R3, [R0], [R1], [R2+n], [R3+n], AR, SR,
SP, PC, #n, [n], [SP+n], [PC+n].

 Register-based and Accumulator based mnemonics

 RISC-like and CISC-like characteristics, including
atomic memory-to-memory operations.

 Flags V N Z C behave exactly as in ARM processors.

 Has instructions that exhibit relative simplicity or
complexity in implementation via HDLs.

11 10 9 8 7 6 5 4 3 2 1 0

0‐7 Dual operand d s

8 Short Move d n

9‐A Unary/Control s/d n

B‐F JMP 2’s complement ‐128 to +127 relative

Figure 1. VIP’s op-code format

4.4 Opportunity of other cores
Because the DE0 uses an FPGA from Altera, students can readily
work with the Nios-II processor. However, while the RTL code of
the Cortex-M1 processor is proprietary, our DE0/TAB platform is
well-suited to host a variety of open-source soft-core processors.
For example, the Tiger MIPS 32 bit processor with a five-stage
pipeline and a RISC instruction set from [10] is designed with an
Altera Avalon bus interface. The GNU tool chain and an IDE to
compile the application and download the executable to the
processor via JTAG interface are also available. Furthermore, the
Tiger MIPS processor has been deployed as a host processor for
automatic compilation of processor/accelerator systems for a well-
known open-source high-level synthesis tool [11]. Although, real-

time debugging functionality is not yet incorporated, we believe
that Tiger MIPS could be nearly a drop-in replacement for the
Cortex-M1 thus opening up a new opportunity for students to
study internal workings of a soft-core processor and its interaction
with a variety of peripherals hosted on our platform both at
hardware and software levels in a holistic fashion. One
complement to this approach is that we can release the Verilog
code which has been implemented in a CPLD to students to
enhance learning experiences further.

4.5 Migration to Cortex-M3 and -M4
Some students may design products using commercial field
programmable microcontrollers but others may go on to design
application-specific processors that are implemented in FPGAs.
Towards either goal, migration from Cortex-M1 that uses a von-
Neumann memory model to the -M3 or -M4 that use Harvard
architecture is beneficial. The M3 also has hardware divide, while
the M4 has DSP features and optional floating point. It is
anticipated that newer processor will offer compatible features.

5. TAB - TEACHING AUXILIARY BOARD
We recognized that laboratory exercises are often crafted around
the facilities of a selected board and it may not be possible to
support some experiments of particular educational worth.
Consequently, we decided to define practical activities and then
ensure our custom board could support them. For example, we
wanted to have an LED on each address and data ‘line’ and
single-step bus transfers. Although this feature is of limited use to
experienced designers it is very helpful when introducing the idea
of addressable memories. The board became known as the
Teaching Auxiliary Board, or TAB, and is shown in Figure 2.

Figure 2. Teaching Auxiliary Board – TAB

5.1 Major Features of TAB
 Plugs into DE0 and both are powered from a USB port.

 Uses Altera MAX II CPLD as address decoder,
simulated delayed memory, PWM generator, 38 kHz
modulated infra-red transceiver, protocol conversions
and various ‘glue’ logic. All written in Verilog and
available to students to use and/or modify.

 LEDs on each address and data line in groups of 4.

 Has hard-core ARM Cortex-M3 mixed-signal micro-
controller (type LM3S5P56) to act as an intelligent
programmable peripheral, or to provide stand-alone
operation. By default, it is programmed to measure the

voltage at two user-adjustable potentiometers which then
determines the volume of the loudspeaker and the gain
associated with the microphone.

 3-axis accelerometer, 3-axis compass, 7-segment display,
temperature sensor, 16 KByte EEPROM, all accessed via
Inter Integrated Circuit (I2C) serial bus.

 AMC7812 - twelve 12-bit ADCs and twelve 12-bit
DACs accessed via Serial Peripheral Interface (SPI).

 Memory - 512 KByte RAM and 1 MByte NOR Flash.

 Parallel access to two 4-bit DACs built using discrete
resistors. One hexadecimal switch. RS-232 transceiver,
Class-D audio amplifier, loudspeaker, microphone,
visible LED and PWM heater. Two analogue
temperature sensors. Two digital potentiometers.

5.2 DE0 and TAB Boards in Operation
All the major components of DE0 and TAB are shown in the
photograph in Figure 3 which was taken while operating in single-
step mode. For the purpose of illustrating the diverse capabilities
of our platform and demonstrating multiple paradigms, the soft-
core Cortex-M1 processor in the FPGA is running a ‘C’ program
that is behaving as a simulator for the VIP ISA. It is reading 12-
bit VIP instructions from RAM on TAB and writing changing
data values to both 4-bit DACs on TAB according to the VIP
register-based assembly program shown immediately below.
Pseudo random levels appear on DACA and a ‘ramp’ on non-
ideal DACB. All peripheral address decoding and hand-shake
timing is managed by the CPLD.

 80000 02C FF0 MOV R2,#0xFF0

 80002 800 MOVS R0,#0

 80003 811 MOVS R1,#1

 80004 060 000 MOV [R2+0x000],R0

 80006 061 001 MOV [R2+0x001],R1

 80008 970 PRSG R0 ;pseudo random

 80009 901 INC R1 ;ramp

 8000A BF9 JMP -7

According to the preferences of the teacher, or the student, VIP’s
intentionally equivalent accumulator-based syntax may be used to
demonstrate another programming paradigm, as shown below.

 80000 02C FF0 LDX #0xFF0

 80002 800 LDA #0

 80003 811 LDB #1

 80004 060 000 STA [X+0x000]

 80006 061 001 STB [X+0x001]

 80008 970 PRSGA ;pseudo random

 80009 901 INCB ;ramp

 8000A BF9 JMP -7

It is also expected that students will work directly with ‘C’
programs and/or assembler using native Thumb code for the
Cortex-M1.

5.3 CPLD Block Diagram
The CPLD provides functions to support communication with,
and/or control of, all the devices and peripherals on TAB. Some

are listed below and these should be read in conjunction with the
diagrams in Figure 5 and Figure 6.

 38 kHz infra-red (IR) transmitter and receiver in NEC
format as used by TV remote controls. UART over infra-
red. Interrupt generation from infra-red received packet.
IR signal router and IR LED control.

 Pulse width modulation module (PWM) for resistive
heater for closed loop control with temperature sensors.

 SPI format conversion of two 12-bit SPI packets from
Cortex-M3 into one 24-bit SPI packet needed by
AMC7812.

 Three simulated memory location with configurable
timing and access requirements.

 Multiplexing busses within CPLD to bi-directional off-
chip busses connected to DE0. Write and read interfaces
to registers within CPLD. Memory-mapped registers.
Interrupt edge capturing and clearing.

 SRAM address decoding and control signals. Flash
address decoding and control signals. Acknowledge
generation for SRAM or Flash.

 Meta-stability compensation for ‘slow’ digital signals.

 Single-stepping mode changer. Single-stepping
acknowledge generation.

5.4 CLPD Resource Utilization
The Verilog RTL code is implemented in an Altera Max II CPLD
type EPM1270T144C5N which has 1270 logic elements, of
which 470 are combinational with no register, 100 are register
only, and 442 are mixed; making 1012/1270 or 80% capacity.

5.5 Experiments Supported By TAB
A copious list of experiments is supported by the DE0/TAB
combination and many are published [12]. One is summarized
below to illustrate well some capabilities of our platform.

TAB has two memory-mapped 4 bit digital-to-analogue
converters built with resistor ‘ladders’. DACA uses nominal
values and has a linear transfer function but DACB uses
inappropriate values and has a non-linear response. Using either
software breakpoints in a ‘C’ program or hardware single stepping
of a VIP assembler program, the voltage associated with each
4-bit code on each DAC is measured.

In the latter case, pressing the single-step button on TAB for more
than 3 seconds causes the mode of interaction between the soft-
core processor and the CPLD to toggle. Instead of acknowledging
each bus transfer in a sub-microsecond time frame, it is necessary
to press this button to complete each bus cycle. In this way
students can see and interpret the binary patterns on static address
and data lines via individual LEDs arranged in groups of 4. See
Figure 3.

The measurements and subsequent analysis may be regarded as
exemplars of ‘experimental methods’ by accreditation agencies.
Using a spreadsheet, the best-fit straight can be found and
students can determine the worst case deviation. In this way,
parameters such as monotonicity, differential and integral
non-linearities are explained in a way that is not practical with
proprietary DACs.

6. STUDENT REACTIONS
We believe we have created a platform that enables students to
explore better multiple paradigms when learning about embedded
systems design using field programmable technologies.
Specifically, a) FPGAs to host commercial and custom soft-core
processors b) FPGAs to provide integrated peripherals and bus
interfaces and c) CPLDs to provide peripherals and support
functions. Especially when judged with respect to relative
performance and complexity.

Since our work is to assist educators, the opinion of students is
important. Consequently, we include some verbatim comments
from interns at the Centre for High Performance Embedded
Systems (CHiPES) who were instrumental in the development of
TAB during 2012. Each has now graduated with degrees in
Bachelor of Technology (Electronics and Communication
Engineering) from Indian Institute of Information Technology,
Allahabad, India.

“Working on TAB, helped me get really comfortable with what
happens at the intersection of hardware and software. Students
can now learn aspects of computer hardware and software in a
way that makes them immediately able to make a contribution to
any industrial or research project”.

“Everything is available for learning, and that’s what makes it a
really special platform for teaching computer engineering.”

“Since it comprises various chips like FPGA, CPLD and
memories along with sensors like infrared, temperature and
accelerometer, there is a long list of experiments that can be done
on TAB. Usually, students don’t get this amount of exposure at
the college level. It is {usually} limited to performing some basic
activities by simply writing in a few registers and getting LEDs to
flash.”

7. FUTURE WORK
There are multiple future opportunities for us as developers and/or
teachers and/or students. These include:

 Conduct activities to assess and quantify the benefits of
combining VIP, DE0/TAB and FPGA soft-cores and
CPLD multi-paradigm approaches.

 Refine Verilog as used in the CPLD and publish.

 Establish a web site to ease distribution of materials.

 Develop synthesizable implementations of VIP in VHDL
and Verilog that can be downloaded to the Cyclone III
on the DE0 and elsewhere. All models and code will be
made available to students.

 Develop a fully-integrated environment where VIP
assembler programs are investigated first in
software-only environments with graphical interfaces,
but later may be downloaded to a synthesized core on
DE0 and interact with TAB to explore real-time
interfacing and enhanced CPLD functions.

 Express the behaviour of VIP in Language for
Instruction Set Architecture (LISA) as used at RWTH
Aachen University; with the intention of automating the
creation of a ‘C’ compiler. This presents some interesting
challenges because of the VIPs ISA.

 Develop student exercises related to extending VIP’s
ISA to 16 bits with application specific instructions.

8. ACKNOWLEDGMENTS
The authors express gratitude to Professor T. Srikanthan, the
Chair of the School of Computer Engineering at NTU, who in
2011 supported the use of the Cortex-M1 soft-core processor and
the development of the DE0/TAB combination for use in taught
courses. Our sincere appreciation goes also to Mr. Param
Aggarwal and Ms. Ayushi Sinha who, as interns in CHiPES and
with our guidance, help to develop the embedded firmware and
software. Also thanks are due to Mr. Fateen Mubarak who
assisted in the CAD design of the printed circuit board.

9. REFERENCES
[1] IBM “Save your code from meltdown using PowerPC atomic

instructions” at
http://www.ibm.com/developerworks/library/pa-atom/

[2] ARM – Thumb-2 Reference Card
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/
QRC0001_UAL.pdf

[3] IBM – Power ISA 2.07 May 3, 2013. See
https://www.power.org

[4] Terasic DE0 Board using Altera Cyclone III FPGA.
Available http://www.terasic.com.tw/cgi-
bin/page/archive.pl?No=364

[5] ARM soft-core Cortex-M1 specifically for implementation in
FPGAs.
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/
QRC0001_UAL.pdf

[6] ARM soft-core Cortex-M0 DesignStart Processor.
http://www.arm.com/support/university/ip/index.php

[7] P. I. Martos and F. Baglivo, "Implementing the Cortex-M0
DesignStart Processor in a Low-end FPGA," presented at the
Proceedings of the VII Southern Programmable Logic
Conference, 2011.

[8] D. C. Dyer, VIP-1T Technical Reference Manual. School of
Computer Engineering, Nanyang Technological University,
25/1/2012, Singapore.

[9] D. C. Dyer, “VIP: A novel 12-bit ISA for introducing novice
students to instruction set paradigms, their use and
implementation”. Proceedings of the 8th Workshop on
Embedded and Cyber-Physical Systems Education (WESE).
October 3, 2013, Montreal, Canada. (in press)

[10] The Tiger MIPS Processor Available:
http://www.cl.cam.ac.uk/teaching/0910//ECAD+Arch/mips.h
tml

[11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.
H. Anderson, et al., "LegUp: high-level synthesis for FPGA-
based processor/accelerator systems," presented at the
Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, Monterey,
CA, USA, 2011.

[12] D. C. Dyer and Y. L. Aung, "Microprocessor-based Systems
Design Teaching Platform for Undergraduate Students in
Computer Engineering" presented at the Proceedings of the
7th Workshop on Embedded and Cyber-Physical Systems
Education., Tampere, Finland, 2012.

Figure 3. DE0 and TAB in operation with Cortex-M1soft-core in FPGA fetching VIP instruction PRSG R0 (0x970)
in single-step mode from address 0x80008

Figure 4. Interconnection of functional components on Terasic’s DE0 including those configured within the Cyclone III FPGA

DE0

Xtal

FPGA
Altera
Cyclone III

NOR
Flash

USB

Green LEDs

Slide Switches

7-segment x 4

Voltage Regulators

RAM

CPLD
MAX II

FPGA
Config

SD

TAB

Connectors
to / from DE0

CPLD
Altera
MAX II

LEDs - Address Bus

Accelerometer
& Compass

7-segment
display NOR

Flash

LEDs - Data Bus

ADC/DAC
12-bit
AMC7812

4-bit

DACs x 2

Temperature
Sensors x 3

Infra-red
Rx

Mic

Infra-red
Tx LED

Loud
Speaker

RAM

Cortex-M3
LM3S5P56

Hex
Switch

RS232
Transceiver

EEPROM

Reset

Step

Figure 5. Interconnection of functional components on the Teaching Auxiliary Board (TAB) of our design

Figure 6. Summary of functional units within the CPLD on TAB

