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Academic General Chairman’s Message 
 
 
 
 
 
 
 
 

Welcome to the 14th edition of the FPGAworld conference!  With the 
dramatic shrinkage of chip technologies continuing to advance, capabilities 
of FPGAs are only increasing their expansion into areas traditionally only 
covered by ASICs.  We cordially welcome you to this premier event mixing 
industrial and academic perspectives in an open forum of debate and 
inclusion. 
 
As in previous years, this year the conference is again taking place in two 
locations, Copenhagen (Denmark) and Stockholm (Sweden). Earlier 
editions of  FPGAworld have been organized in Finland (Tampere), India 
(Udaipur), Germany (Munich) and Sweden (Lund). 
 
The FPGAworld conference has academic reviewed papers, industrial 
reviewed papers, keynote addresses and product presentations, resulting 
in a fertile mix of presentations. FPGAworld also has in both locations 
exhibitors as well as an occasional tutorials. This aims to cover an 
increase in demand from the academic and industrial participants for FPGA 
knowledge. 
 
Please check out the website (http://www.fpgaworld.com) for more 
information about FPGAworld 2017. In addition, you may contact Mia 
(mia@fpgaworld.com) for more information about product presentations, 
web advertisements, sponsoring, tutorials and exhibits. For academic and 
industrial presentations, please see the FPGAworld website for more 
information. 
 
FPGAworld already now opens to receive suggestions for next year’s 
conference in September 2018. We are interested in suggested keynote 
speakers, web advertisements (year around), sponsoring, technical 
papers, product presentations, student projects, exhibits and tutorials. 
Submissions are open to students, academics and industrial professionals. 
Together we can help make the FPGAworld conference exceed our best 
expectations! 
 
The organizers of FPGAworld would like to thank all contributors; we hope 
that attendees will truly enjoy and benefit from the FPGAworld conference. 
 
Sincerely, 
 
Ketil Røed, University of Oslo, Norway 

5



 
 
 
 
 
 
 
 
 
 
 
 

2017 Academic Organization 
 
 
 
 
 
 
 
 
 
 

General Academic Chair 
Ketil Røed, University of Oslo, Norway 
 
Academic Program Chair 
Johan Alme, University of Bergen, Norway 
 
Academic Publication Chair 
Santiago de Pablo, University of Valladolid, Spain 
 
Academic Publicity Chair 
Mohamed Shalan, American University of Cairo, Egypt 
 
Steering Committee Members 
Vincent J. Mooney III, Georgia Institute of Technology, USA 
Peeter Ellervee, Tallinn University of Technology, Estonia 
Johnny Öberg, KTH Royal Institute of Technology, Sweden 
Lennart Lindh, Jönköping University, Sweden 
 
Academic Programme Committee Members 
Peeter Ellervee, Tallin University of Technology, Estonia 
Reiner Hartenstein, TU Kaiserslautern, Germany 
Leandro Soares Indrusiak, University of York, United Kingdom 
Pramote Kuacharoen, National Institute of Development Administration, Thailand 
Johnny Öberg, KTH Royal Institute of Technology, Sweden 
Santiago de Pablo, University of Valladolid, Spain 
Adam Postula, University of Queensland, Australia 
Ketil Røed, University of Oslo, Norway 
Timo D. Hämäläinen, Tampere University of Technology, Finland 
Johan Alme, University of Bergen, Norway 
Erno Salminen, Tampere University of Technology, Finland 
Mohamed Shalan, American University of Cairo, Egypt 
Shashi Kumar, Jönköping University, Sweden 
Anshul Kumar, Indian Institute of Technology, IIT Delhi, India 
Paul Kolin, Indian Institute of Technology, IIT Delhi, India 
Vincent J. Mooney III, Georgia Institute of Technology, USA 
Attiq Ur Rehman, University of Bergen, Norway 

6



2017 General and Industrial Organization 
 
 
 
 
 
 
 
 
 
 

Industrial Program Chair 
Lennart Lindh, FPGAworld, Sweden 
 
Industrial Programme Committee Members 
Solfrid Hasund, Bergen University College 
Kim Petersén, HDC, Sweden 
Mickael Unnebäck, ORSoC, Sweden 
Fredrik Lång, EBV, Sweden 
Niclas Jansson, BitSim, Sweden 
Göran Bilski, Xilinx, Sweden 
Per Henricsson, Elektroniktidningen, Sweden 
Espen Tallaksen, Bitvis, Norway 
Tommy Klevin, ÅF, Sweden 
Tryggve Mathiesen, InformASIC, Sweden 
Fredrik Kjellberg, Net Insight, Sweden 
Daniel Stackenäs, Altera, Sweden 
Stefan Sjöholm, Realfast, Sweden 
Torbjorn Soderlund, Xilinx, Sweden 
Anders Enggaard, Axcon, Denmark 
Doug Amos, Synopsys, UK 
Guido Schreiner, The Mathworks, Germany 
Stig Kalmo, Engineering College of Aarhus, Denmark 
Hichem Belhadj, Microsemi, USA 
Rolf Sylvester-Hvid, Aktuell Elektronik, Denmark 
Tony Eriksson, Future Electronics, Sweden 
Ann-Luise Vestrup Kristensen, Silica, Denmark 
Mircea Alexandru Dabacan, Digilent Ro, Romania 
Andreas Engberg, ConMed, USA 
Abbas Bigdeli, Nicta, Australia 
Siegfried Weigert, ibw, Germany 
Nikolay Rognlien, Arrow Norway AS, Noway 
Basavaraj Hooli, FPGAworld, India 
Clint Cole, Digilent, USA 
Gagan Puri, Coreel, India 
Sudarshan Natu, Symphony, India 
Udayprakash Raghunath Singh, SPSU, India 
Yehoshua Shoshan, Innofour, Sweden 
Hai Migdal, Gidel, Israel 
Thorsten Trenz, Trenz Electronic GmbH, Germany 
Gerd Prillwitz, Ansys, Germany 
Juergen Kessler, BlackForest EDA, Germany 
Willem Groter, HDL Works, Netherlands 
Maurizio Casti, Thales Group, Italy 
Andreas Schwarztrauber, MSC, Germany 
Ben Liu, Digilent, Taiwan 
Mattias Karlsson, Saab, Sweden 
Antti Innamaa, Synopsys, Finland 
Jacky Cheng, Huafan Tech, China 
Mikko Rasa, Arrow, Finland 
Thony Johansson, ÅF, Sweden 
Henrik Eeckenhaut, Sigasi, Belgium 
Mike Dini, Dini Group, USA 
Jan Viktorin, RehiveTech, Czech Republic 

7



Svend Modtgard, Wdiag, Germany 
Soren Manicus, TekPartner, Denmark 
Rune Domsten, IndesmaTech, Denmark 
 
Industrial Program and Publicity Manager 
Lennart Lindh, FPGAworld, Sweden 
 
Sales, Registration and Finance Manager 
Mia Lindh, FPGAworld, Sweden 
 

8



Sponsors, Exhibitors and Product Presenters 
 
 
 
 
 
 
 

ÅF, Sweden 
DTU, Technical University of Denmark 
Aktuel Elektronik, Denmark 
Elektroniktidningen, Sweden 
Prevas, Sweden 
XILINX, USA 
Linear Technology, USA 
Dini Group, USA 
Innofour, Netherlands 
Terasic, Taiwan 
Avnet Silica, Denmark 
Avnet Silica, Sweden 
Synective Labs, Sweden 
Samtec, USA 
Arrow, Europe 
Motion Control, Sweden 
AGSTU education, Sweden 
 
In cooperation with ACM 
 

9



 

 

FPGAworld 2017 @ Stockholm
 
 

Frösundaleden 2A 
169 70 Solna, Sweden 

 
 

Conference Programme 
 
 
 
 
 
 
 
 

08:30  Registration 
 
 

09:00  Conference opening – Room Renen 
 Lennart Lindh, FPGAworld. 

 
 

09:15  Key Note Session 
 RF Data Converters in an All Programmable MPSoC FPGA  
 Brendan Farley, XILINX Inc., Ireland 

 
 

10:00  Coffee Break & Exhibition 
 
 

10:30  Parallel Sessions 
 
 

12:00  Lunch Break & Exhibition 
 
 

13:00  Mike Dini Talk 
 FPGA events during the year that has gone and gossips 

 
 

13:30  Break 
 
 

13:45  Parallel Sessions 
 
 

14:45  Coffee Break & Exhibition 
 
 

15:15  Key Note Session 
 Programmable Technologies: New Challenges and New Opportunities 
Hichem Belhadj, Chief Systems Architect, CTO Office, Microsemi Corp. USA 

 
 

16:00  Go Home Drink in the Exhibition Hall 
 
 
 
 
 
 
 

The exhibition will be open during the day. 
Coffee will be served in the exhibition area. 

 
 
 
 
 
 
 
 

10



 

 

Room: Renen 
Key Note Session @ Stokholm 

Speaker: Brendan Farley 
XILINX Inc., Ireland 

 
 
 
 
 
 

        § RF Data Converters in an All Programmable MPSoC FPGA  
Brendan Farley, XILINX Inc.  
Room: Renen 

 
Recent state-of-the-art FPGAs have seen the integration of multi-giga-sample RF data 
converters to address the requirements of next generation wideband digital 
communications system. The keynote presentation will give an overview of the RFSoC 
FPGA which integrates such functionality and will discuss some potential applications and 
future trends. 
 
Brendan Farley is a Senior Director of Engineering at US multinational technology 
corporation Xilinx Inc. where he is responsible for Analog and Digital-RF Research and 
Development. Brendan holds a Bachelor Degree in Electronic Engineering from Trinity 
College Dublin and a Master of Science Degree in Technology Management from NUI 
Galway. 
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Room: Renen 
Key Note Session @ Stokholm 

Speaker: Hichem Belhadj 
Microsemi Corp., USA 

 
 
 
 
 
 

        § Programmable Technologies: New Challenges and New Opportunities  
Hichem Belhadj, CTO Office, Microsemi Corp., USA.  
Room: Renen 

 
Hichem Belhadj has been with Microsemi for close to 20 years. He is currently the Chief 
System Architect at the CTO Office. Prior to joining the CTO Office, Hichem held executive 
management positions in Corporate Sales and Field Systems and Applications at Microsemi, 
Actel, IST, and INPG. Hichem holds a Master and PhD from the Polytechnic Institute of 
Grenoble, France. 
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Room: Renen 
Sessions A1-A2-A3 

Session Chair: Kim Petersén 
HDC, Sweden 

 
 
 
 
 
 

        § The Impact of Place and Route on FPGA Logic Synthesis 
 
For a quarter century, synthesizing an RTL design into an FPGA circuit has required only a 
loose understanding of the impact of Place and Route (P&R) software. By estimating route 
delays during Logic Synthesis based on graph properties and with accurate timing 
constraints, it was possible to achieve timing closure even for high-frequency clocks. In this 
presentation, we explain useful techniques to improve system performance and to achieve 
success in P&R more reliably. 
 
Presenter: Pieter J. Hazewindus, USA. 
 
 
 

        § Portable Stimulus Specification 
The Next Big Wave in Functional Verification 

 
In this paper we will describe the upcoming proposed standard for "Portable Stimulus 
Specification" (PSS) from Accellera. We will show how a single model of stimulus and 
scenarios can be re-used across different environments such as High-level C models, UVM 
simulations or even embedded SW, thus providing the verification engineers with a unified 
way to model interaction with complex SoC's or FPGA's containing CPU cores and 
embedded SW. 
 
More information: Accellera has been working on the new proposed PSS standard since 
2014. At DAC 2017 the Working group released the first "Early Adopter" version of the 
standard. This new proposed standard has received tremendous amounts of interest from 
the industry - at DAC and DVCon the seminars about PSS were completely overbooked and 
only standing room was available. 
 
For more information please see http://accellera.org/news/press-releases/244-accellera-
portablestimulus-early-adopter-specification-now-available-for-public-review 
 
Presenter: Staffan Berg, Sweden. 
 
 
 

        § Constrained Random and Functional Coverage for VHDL testbenches 
controlled in a structured manner  

 
OSVVM provides a good library for CR and FC. But how should we apply this in a TB to 
avoid the normal verification traps? 
 
- Bad overview 
- Bad readability 
- Bad maintainability & extensibility 
- Inefficient reuse 
 
Even most well-structured TBs do not sufficiently avoid these problems. 
  
This presentation will show how easy it is to combine OSVVM and UVVM to get a ‘Unified 
VHDL Verification Methodology’ that provides advanced CR and FC, - and at the same time 
promotes overview, readability, maintainability, extensibility and reuse. 
 
Presenter: Espen Tallaksen, Norway. 
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Room: Räven 
Sessions B1-B2-A4 

Session Chair: Ketil Røed 
University of Oslo, Norway 

 
 
 
 
 
 

        § Use of Analog Signatures for Hardware Trojan Detection 
 
Malicious Hardware Trojans can corrupt data which if undetected may cause serious harm. 
We propose a technique where characteristics of the data itself are used to detect 
Hardware Trojan (HT) attacks. In particular, we use a two-chip approach where we 
generate a data “signature” in analog and test for the signature in a partially reconfigurable 
digital microchip where the HT may attack. 
 
This paper presents an overall signature-based HT detection architecture and case study 
for cardiovascular signals used in medical device technology. Our results show that with 
minimal performance and area overhead, the proposed architecture is able to detect HT 
attacks on primary data inputs as well as on multiple modules of the design. 
 
Authors: Taimour Wehbe, Vincent J. Mooney, David Keezer, Omer T. Inan, 
                Abdul Qadir Javaid, and Chinmoy Kulkarni, Georgia Institute of Technology, USA 
 
 

§ Synthesis of VLIW Accelerators from Formal Descriptions  
in a Real-Time Multi-Core Environment 

 
Designing, programming and design space exploration of predictable Real-Time systems on 
Heterogeneous Multi-Core platforms is a very complex task. The increasing validation costs 
and time-to-market pressure creates a desire to build systems that are correct by 
construction. 
 
Formal description based on Model of Computations (MoCs) is a convenient way to create 
high-level models of such systems. The MoCs provide abstraction and high level modeling 
through a clear set of rules based on mathematics, which can be used as input for system 
synthesis. A formal synthesis flow would then ensure that the resulting real-time system is 
both predictable and correct by construction, provided that all transformations used in the 
flow can be verified/trusted. 
 
In this paper we show how a Real-Time computation node in an MPSoC system, described 
using the Synchronous MoC, can be transformed into a VLIW accelerator. The created 
accelerator is incorporated as a computation node in a heterogeneous multi-core system 
implemented on an FPGA. 
 
Author: Johnny Öberg, Royal Institute of Technology (KTH), Sweden. 
 
 

§ Highly optimized streaming FFTs for FPGAs  
 
In this work we show how streaming FFTs can be highly optimized on FPGAs. Compared to 
previous state-of-the-art, we increase the throughput per slice by about a factor of five for 
both Virtex-4 and Virtex-6 FPGAs without increasing the number of DSP blocks nor the 
amount of memory used. The results are obtained by better utilizing the FPGA resources 
rather than any novelty in the FFT algorithm nor the FFT architecture. Different 
optimization levels are presented with the fastest ones operating at the maximum clock 
frequency of the device. 

 
Authors: Carl Ingemarsson, Petter Källström, and Oscar Gustafsson, 
                Linköping University, Sweden. 
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Use of Analog Signatures for Hardware Trojan Detection 
Taimour Wehbe1, Vincent J. Mooney1,2, David Keezer1, Omer T. Inan1,3 and Abdul Qadir Javaid1 

1School of Electrical and Computer Engineering, 2School of Computer Science, 3Department of Biomedical Engineering 
Georgia Institute of Technology, Atlanta, Georgia, USA 

taimour.wehbe@gatech.edu, {mooney, dkeezer, omer.inan}@ece.gatech.edu, aqjavaid@gatech.edu 
 

ABSTRACT 
Malicious Hardware Trojans can corrupt data which if undetected 
may cause serious harm.  We propose a technique where 
characteristics of the data itself are used to detect Hardware Trojan 
(HT) attacks.  In particular, we use a two-chip approach where we 
generate a data “signature” in analog and test for the signature in a 
partially reconfigurable digital microchip where the HT may attack.  
This paper presents an overall signature-based HT detection 
architecture and case study for cardiovascular signals used in 
medical device technology.  Our results show that with minimal 
performance and area overhead, the proposed architecture is able to 
detect HT attacks on primary data inputs as well as on multiple 
modules of the design. 

CCS Concepts 
• Security and privacy~Embedded systems security   • Security 
and privacy~Hardware security implementation   • Security 
and privacy~Malicious design modifications   • Security and 
privacy~Security in hardware 

Keywords 

Hardware Trojans, Analog Signatures, Reconfigurable Logic, 
Ballistocardiography 

1. INTRODUCTION 
The chip manufacturing process is becoming more and more dis-
aggregated leading to an increase in chip fabrication vulnerabilities 
to malicious activities and alterations referred to in the literature as 
Hardware Trojans (HTs).  Effects of HT modifications can be 
disastrous if the attack targets sensitive applications.  Therefore, 
hardware security, and more specifically, HT detection 
mechanisms are gaining increasing popularity in recent years. 

Embedded devices are typically constrained in terms of energy 
consumption and computing power, making the process of 
designing methods to catch HTs not a trivial task.  Therefore, an 
HT detection circuitry should try to provide the highest possible 
security while maintaining low area and power overhead. 

In this paper, we present a technique to capture ultra-small HTs 
which attempt to modify the functionality of digital chips.  These 
types of attacks are not easily detected by other mechanisms due to 
their extremely small size [5].  Our work is motivated by a health 
monitoring application which captures heart signals and transmits 
them for further processing and analysis [8].  The physiological 
signals have a known relationship which we take advantage of to 
create signatures that check for the integrity of the captured data.  
Specifically, during data harvesting, we create analog-based 

signatures, and then we check for the validity of these signatures on 
a digital chip using reconfigurable logic to ensure that the chip has 
no HT attacks and that the data’s integrity is maintained before 
transmission. 

The paper is divided as follows.  Section 2 presents background and 
prior work about concepts that are used throughout the paper.  
Section 3 introduces our threat scenario.  Section 4 discusses our 
HT detection architecture in detail, and Section 5 presents possible 
HT attacks and explains how our proposed architecture catches 
them.  Section 6 reports our simulation and synthesis results.  
Finally, a discussion is presented in Section 7 before we draw our 
conclusions in Section 8. 

2. BACKGROUND AND PRIOR WORK 
2.1 Hardware Trojan Attacks and Detection 
Methods 
Hardware attacks and specifically those related to Hardware 
Trojans have been receiving increased attention in the past several 
years.  This is driven in a major way by industrial concerns about 
the integrity of their chips, especially with the recent paradigm of 
the Internet-of-Things (IoT).  HT attacks on highly interconnected 
embedded devices can cause severe damage.   

A formal HT taxonomy has been introduced which divides HT 
attacks according to three broad characteristics: (i) physical 
characteristics, (ii) activation characteristics and (iii) action 
characteristics (Figure 1) [2].  The (i) physical characteristics 
divide up HT attacks according to their distribution on the chip, 
their size, their structure and their type (parametric or functional).  
The (ii) activation characteristics divide them into internally 
activated HTs and externally activated ones.  Externally triggered 
Hardware Trojans wait for an activation signal coming from 
outside the chip.  Internally triggered ones can be classified into 
two subtypes: (a) an always on HT and (b) a conditionally triggered 
HT with the latter having the condition dependent on some logic in 
the circuit or some sensor attached to the circuit.  The (iii) action 
characteristics divide the HT attacks according to their effect, i.e., 
whether the HT is going to leak information, corrupt functionality 
and/or modify the circuit’s specification. 

Several HT detection methods [1-7] have been proposed to address 
specific types of the aforementioned attacks.  These methods can 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
FPGAWorld’17, September 19–21, Stockholm and Copenhagen. 
Copyright © 2017 ACM 978-1-4503-5154-6 

Figure 1. Hardware Trojan taxonomy. 
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be broadly divided into side-channel analysis techniques, HT 
triggering techniques, and correct functional verification [2].  For 
example, the authors of [2,6,7] provide a recent survey of multiple 
types of HT detection methods including methods that are based on 
power analysis, timing analysis, HT activation mechanisms and 
architecture-level detection. In addition, the authors of [1] 
introduce an HT prevention and detection mechanism for integrated 
circuits (IC) where they prevent a wide variety of HT attacks during 
IC testing and during operation in the field. 

In our previous work [3-5] we also addressed multiple types of HT 
attacks by implementing an architectural-level detection 
mechanism.  Specifically, we designed signature-based HT 
detection architectures to detect attacks that attempt to modify the 
functionality of a digital chip by modifying the structural logic of 
internal modules in the design. 

2.2 Ballistocardiography 
An alternative to the Electrocardiogram (ECG) measure of heart 
activity is the Ballistocardiogram (BCG) which utilizes Newton’s 
second law ( ), i.e., the reaction of the body to the pumping 
action of the heart [8,9].  Specifically, given a properly 
instrumented scale, three-dimensional forces can be non-invasively 
captured to represent the cardiogenic vibrations of the body 
[8,9,10].  The BCG reveals information about heart rate, etc., but, 
unlike the ECG, the BCG but does not require electrodes or gel to 
obtain a high fidelity measurement of the body.  Figure 2 shows a 
force plate measuring the BCG.  
In this work, we use BCG sensors whose analog output values fall 
within a range of  to  and have required accuracy 
of four significant digits after the decimal.  Thus, to cover the range 
and provide the needed accuracy, we use signed 16-bit fixed-point 
numbers.  In some cases, values will be squared and added, in 
which case the range of  to  needs to be supported.  Thus, 
in this paper we use a fixed-point format with the most significant 
bit as the sign bit, the next bit as a representation of a value of 1 or 
0, and the remaining 14 bits representing the fractional part of the 
number.  

3. THREAT SCENARIO 
Figure 3 shows the main HT threat model that we consider in this 
work.  The HT is composed of trigger circuitry and a payload.  This 
model is representative of most prior work [1-7].  

The trigger circuitry is responsible for waiting for an activation 
characteristic to trigger the HT.  The activation characteristic, as 
described in Section 2.1 and as shown in Figure 1, can be externally 
triggered or internally triggered.  In our threat scenario, we consider 
HT trigger circuitry which is based on a conditionally triggered 
Trojan.  As Figure 3 shows, a trigger circuitry could be composed 
of a counter and minimal control logic.  The counter is attached to 
a rarely toggling node in the design such as a one coming from a 
processing block.  The counter is incremented every time the node 
toggles.  The control logic monitors the output of the counter and 
asserts the trigger once the counter reaches a specific predefined 
value.  In addition, we assume in our threat model that once the HT 
is triggered, it remains on indefinitely.  That is because if an 
attacker wants to intelligently turn on the HT for finite periods to 
bypass specific detection techniques, the trigger circuitry (shown in 
Figure 3) will have to be more complex resulting in an HT with a 
larger size.  Such types of larger sized HTs are beyond the scope of 
our work and, as indicated in Section 2.1, can be caught by other 
HT detection techniques [2,6,7].  

The payload in our threat model is composed of an exclusive-or 
gate that is connected to one of the data’s bits in a way such that 
when the HT is triggered, the data bit is complemented resulting in 
an attack on the data stream.  For example, Figure 3 shows an HT 
altering the most significant bit of Data[63:0].  

In conclusion, we consider, as shown in bold face at each level in 
Figure 1, small size HT logic which is conditionally triggered on 
certain internal logic conditions or states able to be externally 
activated by an attacker where the HT attack aims to alter the 
functionality of the microchip [2].  The specific scenario involves 
analog measurements of health sensors where the data have known 
physiological relationships among the signals. 

4. HARDWARE TROJAN DETECTION 
ARCHITECTURE 
To increase protection against HT attacks which aim to disrupt chip 
functionality, we approach the overall embedded system design by 
separating the analog measurements from the digital processing by 
using a minimum of two chips as shown in Figure 4 [4].  The first 
chip shown on the left of Figure 4 – “Chip 1: Analog chip” – 
contains all of the analog components required for data acquisition.  
For example, this might include most of the sensor hardware, some 
filters, amplifiers, and analog-to-digital converters.  The second 
chip shown on the right-hand side of Figure 4 – “Chip 2: Digital 
chip with embedded reconfigurable logic” – contains most of the 
processing modules in digital logic.  For example, the digital chip 
can perform encryption/decryption on the data before it is sent to 
the cloud.  In this work, we take advantage of the security by design 
approach where security is treated as a first class citizen in the 
design process [11].  Thus, we incorporate critical security features 
as early as we can in the design process of the data path.  
Specifically, our architecture enhances security by the generation 

Figure 2. BCG force-plate. 

Figure 3. Hardware Trojan threat model. 
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of data signatures in analog.  This not only enables checking the 
integrity of the data as early as possible but also further complicates 
the job of an attacker.  An attacker trying to simultaneously modify 
the data and its associated signature will now face much more 
difficulty as the attacking team should now incorporate expertise in 
both analog and digital designs.  

4.1 Chip 1: Analog Chip 
4.1.1 Strategy 
A separate microchip focused on analog sensor components 
enables the generation of an analog signature.  This approach 
provides a separate chip from the main digital computational 
circuitry, thus complicating the efforts of an attacker.  

4.1.2 Example 
Figure 5 shows an example of an architecture of the analog chip of 
Figure 4.  Ballistocardiography (BCG) data harvested from sensors 
are amplified and fed to bandpass filters for initial processing and 
to improve the signal-to-noise ratio of the captured data.  Normally, 
data would be directly fed to analog-to-digital converters and 
passed to digital logic for further processing on the same microchip.  
In our approach, as the data is being harvested, we simultaneously 
create an analog signature using the vector sum (i.e., square root of 
the sum of the squares of the two BCG measurements) of the 
captured data as shown in the bottom right-hand side of Figure 5.  
One of the major reasons behind choosing the vector sum as an 
analog signature is due to its importance and need in analyzing 

BCG data in later stages [12,13].  In addition, creating such a type 
of signature in analog is relatively simple due to its use of common 
analog components (adders, squarers and square root 
modules) [14].  The created analog signature is also fed to an 
analog-to-digital converter, where the analog signature is sampled, 
quantized, and fed to the digital logic of the second chip in Figure 4.   

4.2 Chip 2: Digital Chip with Embedded 
Reconfigurable Logic 
4.2.1 Strategy 
In our architecture, the goals of the digital chip are (i) encryption/ 
decryption, (ii) signature comparison testing and (iii) application-
specific computation.  In order to test for the integrity of the data 
before transmission, a digital version of the analog-based signature 
is compared to what should be the same signature value 
recalculated from the raw data.  Additional confidence in the 
encryption logic can be gained by decrypting the data (we assume 
that in typical operation, the embedded system is either sending or 
receiving data; thus, in the case of encrypting in order to send data, 
the decryption unit is not needed for sending and so is available to 
decrypt the encrypted data for test purposes).  We perform the 
signature testing in embedded reconfigurable logic making it harder 
for an HT to attack our testing mechanism as the attacker would not 
know the mechanism’s exact location prior to deployment.  In 
addition, reconfigurability allows our architecture to be more 
flexible and scalable where the same digital chip can work with 
multiple versions of the analog chip performing different types of 
signature generation and testing.  In summary, our testing 
mechanism compares a digital version of the analog-based 
signature arriving in a separate input from the analog chip to a 
regenerated version of the signature value using raw data after 
encryption and decryption.  If the signatures do not match (within 
a tolerance level due to possible low order differences in least 
significant bits due to small variations which may occur in analog-
to-digital conversion), we activate an alarm signal. 

Figure 5. Analog chip sampling data and generating vector sum as a signature. 

Figure 4. Two-chip architecture overview. 
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4.2.2 Example 
Figure 6 displays an example of an architecture for the digital chip 
in our design approach.  As mentioned in Section 4, this chip 
contains most of the processing modules and encryption blocks.  As 
shown in Figure 6, the digital chip receives three data inputs from 
the analog chip.  The first two inputs represent BCG data 
components, namely, (i) the BCG Head-to-Foot Data and (ii) the 
BCG Dorso-Ventral Data [12,13].  The third input to the chip is the 
analog-based signature which in our scenario is the vector sum (i.e., 
square root of the sum of the squares) of each sample of the BCG 
data (i) and (ii).  

Figure 6 compares the digital version of the analog-based signature 
with the BCG raw data using reconfigurable logic as follows.  First, 
the 16-bit vector sum (i.e., the digital value of the analog-based 
signature) is input to a 16 x 16 bit multiplier, operating as a squarer, 
thus generating a 32-bit output.  This value represents the sum of 
squares of the two BCG data inputs.  It is to be noted that since the 
analog chip is sampling the BCG data using 16-bit analog-to-digital 
converters and since our data is represented using fixed point 
number values between -1 and +1, the 32-bit result of the multiplier 
is truncated and the most significant 16-bits of the result are used 
as inputs to the next stage with the fixed-point format described in 
Section 2.2.  The created 16-bit version of the sum of squares is 
referred to as Signature 1 in Figure 6.  

Simultaneously, the input set of BCG data is buffered and 
concatenated to form blocks of 64-bits for transmission.  Each 64-
bit block of data is then passed through an encryption cipher such 
as PRESENT [15].  The encrypted data (ciphertext) is then passed 
through a decryption cipher to regenerate the plaintext.  The reason 
for decrypting the ciphertext is to help detect HT attacks on the 
encryption and decryption modules [5].  The regenerated plaintext 
is partitioned and each data set is passed through a series of 
multiplications and additions to recalculate the sum of squares of 
the input data.  This generated sum of squares of each data set is 
referred to as Signature 2 in the block diagram.  Signature 1 and 
Signature 2 are then fed through a comparator logic.  The 
comparator logic, shown in Figure 6, performs the following: 

� if (|Signature 1 – Signature 2| ≤ threshold) 
      declare a match 

� if (|Signature 1 – Signature 2| > threshold) 
      declare a mismatch 

where the threshold is an input set by the user due to the analog 
nature of the application and the signature.  The result of the 
comparator is then passed to a release logic block (top right-hand 
side of Figure 6).  The release logic is responsible for saving the 
values of the encrypted data and signature of each BCG data set 
until the comparator decision is made.  By monitoring the 
comparator’s output, the release logic takes the decision as to 
whether the encrypted BCG data set and the corresponding 
signature is to be released or not.  Ideally, if the architecture is not 
attacked, the two internally generated signatures (Signature 1 and 
Signature 2) should match.  However, if an HT attack attempts to 
corrupt any of the significant bits of the data or signature values, 
the comparison logic will declare a mismatch and the data will not 
be released. 

To verify the correct operation of the comparator logic, a 
“comparator testing logic” block, shown in the small dotted box in 
Figure 6, is inserted into our architecture.  Specifically, the control 
unit of the comparator testing logic periodically initiates a test of 
an altered signature to verify the correct operation of the 
comparator block in case of a failed comparison.  To do so, the 
comparator testing logic triggers a “test mode” signal to 
intentionally modify Signature 2, as shown in Figure 6.  It then 
monitors the comparator’s result.  If the comparator declares a 
match, the comparator testing logic catches the discrepancy and 
sends an alarm to the release logic block to stop the transmission of 
data.  A more detailed description of the functionality of the 
comparator testing logic is presented later in Section 5.2.1. 

It is important to note that in this work our architecture focuses only 
on creating means of HT detection by asserting an alarm signal 
when an HT is believed to be present.  The decisions and 
countermeasures to such types of attacks are kept to be processed 
and analyzed by higher level policies and protocols.  

Figure 6. Digital chip validating the integrity of the data by checking for signature correctness in reconfigurable logic. 
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5. HARDWARE TROJAN ATTACK AND 
DETECTION 
Figure 7 shows the digital chip architecture with the specific HT 
attacks that we discuss and simulate in this work.  The attacks we 
aim to address are numbered according to their type from 1 to 4. 
Attack types 1 and 2 are single attacks, i.e., targetting one point in 
the architecture, and attack types 3 and 4 are coordinated attacks, 
i.e., targetting multiple points in the architecture. 

5.1 Single Attacks 
Attack types 1 and 2 target a single point in the architecture as 
shown in Figure 7.  The goal behind these two types of attack is to 
modify the data either as it arrives at the input of the chip or at the 
output of any of the internal modules along the data path.  Both 
types of attack attempt to modify the data in the same way as 
presented in our threat scenario described in Section 3 and shown 
in Figure 3.  Namely, HT trigger circuitry is connected to an 
exclusive-or gate such that when the Trojan is triggered, one bit of 
the targeted data is complemented resulting in data modification. 

5.1.1 Attack Type 1 
 Attack type number 1 (Figure 7) is an attack on the input data 
immediately after it reaches the chip and before any processing or 
signature generation has happened [4].  This type of attack is impor-
tant as its detection depends on the analog signature generation.  
Other types of signature-based HT detection techniques do not 
cover this type of attack as their Signature 1 generation relies on 
the input data [1,5].  In our detection approach however, only 
Signature 2 in Figure 7 will be affected.  The comparison then with 
Signature 1 will result in a mismatch and the release logic will 
prevent the data and signature transmission out of the chip.  

5.1.2 Attack Type 2 
Attack type number 2 targets the intermediate data as it passes 
through the different modules in our architecture.  Figure 7 shows 
an example of this type of attack where the HT tries to modify the 
output of the multiplexer, right before the data is fed to the squarer 
module.  This results in the generation of an altered Signature 2, 

which when compared to Signature 1 results in a comparison 
mismatch and alarm trigger.  Contrary to HT attacks of type 1, HT 
attacks of type 2, i.e., inserted to affect the output of the different 
modules in an architecture, have been studied earlier in literature.  
Different detection techniques including signature based ones were 
proven to be effective [1,3-5]. Our architecture not only detects 
these types of attacks but also detects attacks that target the input 
data as shown in attack type 1. 

5.2 Coordinated Attacks  
Hardware Trojan attacks of types 3 and 4 attempt to initiate a 
coordinated attack targeting simultaneously two points of the 
architecture as shown in Figure 7. 

5.2.1 Attack Type 3 
A detailed view of an HT of attack type 3 is presented in Figure 8.  
The HT trigger circuitry is connected to two payloads.  The first 
payload (Payload 1 in Figure 8) affects the architecture in the same 
way as discussed earlier in attack types 1 and 2 as well as in 
Figure 3.  The second payload (Payload 2 in Figure 8), which is 
triggered at the same time, attempts to set the output of the 
comparator logic to a fixed value indicating a matched comparison.  

In this example of attack type 3 as shown in Figures 7 and 8, once 
the trigger is set, this attack simultaneously targets (i) the output of 
the encryption cipher by modifying it and (ii) the output of the 
comparator logic by forcing the result of the comparison to show a 
match even if the signatures at the input of the comparator logic do 
not match.  Since this tiny HT remains always on once triggered, 
the comparator logic will always show a match regardless of input.  
The effect of both payloads result in the modification of the data 
and its passage undetected.  To prevent such a type of attack, the 
comparator testing logic block is inserted to frequently test for this 
specific case.  Periodically, the test mode signal shown in Figure 7 
is asserted so that Signature 2 coming out of the 16-bit adder is 
intentionally modified.  The result of the comparison is then read 
by the comparator testing logic.  If the result of the comparator 
shows a match, the comparator testing logic will detect the attack 
and inform the release logic.   When the test mode is off, the 

Figure 7. The digital chip architecture with the different types of HT attacks discussed in Section 5. 
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signature is passed as is (i.e., unaltered) so that the comparator 
testing logic does not affect the functionality of the circuit.  

5.2.2 Attack Type 4 
Figure 9 shows a detailed view of an HT of attack type 4.  The HT 
trigger circuitry in this case is also connected to two payloads.  The 
first payload (Payload 1 in Figure 9) attacks the BCG input data, 
and the second payload (Payload 2 in Figure 9) attacks the analog-
based signature (see Figure 7).  A coordinated attack on the least 
significant bits of the BCG input data and the analog-based 
signature (as shown in Figure 9) will result in the modification of 
the data and, if the modified values result in |Signature 1 – 
Signature 2| ≤ threshold, may result in HT operation going 
undetected.  It is unclear what ability the attacker would gain by 
changing the low order bits as these slight variations in the values 
of the inputs and the signature may also occur due to the lack of 
precision of the analog sensor. 

Another variant of attack type 4 is when the HT attempts to modify 
one of the high order bits of both the BCG input data and the 
analog-based signature.  In this case, the attacker would have to 
exploit the vector sum relation between the BCG inputs to 
successfully modify both the BCG data and the signature in a way 
such that the modifications pass undetected.  However, this type of 
HT would require additional more complex circuitry (such as 
multipliers and adders) and would therefore fall beyond our threat 
model of a small sized HT of only a few logic gates as discussed in 
Section 3.  Such types of attacks – including associated techniques 
for detecting HTs with large footprints (e.g., via power-based 
techniques in addition to others) – have been well studied in 
literature [2].  It is important to note that these prior HT detection 
techniques are complementary to our work and can be incorporated 
alongside our approach. 

6. EXPERIMENTAL RESULTS 
The following section reports and discusses the functional 
simulations and the synthesis results of our analog-based signature 
HT detection architecture.  The digital portions of our architecture 
were implemented in VHDL code, and our simulations were done 
using Mentor Graphics ModelSim SE version 10.2b revision 
2013.05 for Linux.   

In the following simulations, we assume that the digital signatures 
of our design (Signature 1 and Signature 2 in Figure 6) require an 
accuracy of at least 3 significant digits after the decimal.  Therefore, 
we set the comparator threshold 16-bit register to a hexadecimal 
value of  which in binary is  and 
equals  in our fixed point representation (see Section 2.2). 

6.1 Simulation Results and Functional 
Verification 
Each of the attack types shown in Figure 7 and described in 
Section 5 were simulated to verify the functional correctness of our 
design and to demonstrate when the architecture is able to catch the 
HT attacks. 

6.1.1 Simulation of Attack Type 1 
To simulate attack type 1, which is at the input of the digital chip, 
we inserted an HT logic similar to the one shown in Figure 3 
targeting the input data as it arrives on chip.  The input BCG Head-
to-Foot data in Figure 7 was modified such that one of the most 
significant bits in the 16-bit input was complemented.  As 
mentioned in Section 3, the HT threat scenario that we consider in 
this work is triggered by some internal conditions or states.  For our 
simulation purposes, the HT trigger waits on an attacker-defined 
number of occurrences of a specific input data.  When the required 
condition is met, the trigger is set and the payload modifies the 
input data resulting in the modification of the functional behavior 
of the chip. 

After the altered input data is passed through the encryption and 
decryption ciphers, the resulting output is then fed through a series 
of multiplications and additions and finally is compared with the 
squared value of the analog-based signature.  Since the input data 
was altered by the HT, the values of signatures at the input of the 
comparator differ by an amount greater than the threshold ( ) 
and so the comparator declared a mismatch at its output.  The 
release logic, monitoring the comparator’s output, stopped the 
transmission of the altered encrypted data and triggered an alarm 
signal indicating the presence of the HT.  All of this was verified in 
VHDL simulation using ModelSim.  

6.1.2 Simulation of Attack Type 2 
The simulation of attack type 2 was implemented in a similar 
fashion as attack type 1.  The major difference between this type of 
attack and attack type 1 is the place where the HT attacks.  In attack 
type 2, the HT, once triggered, modifies the value at an output of a 
hardware block in the design.  In our simulations, we performed 
multiple separate tests by inserting HT logic at the output of the 
different modules of the architecture. 

For example, in one of our simulations, we inserted HT logic at the 
output of the multiplexer in the design as shown by the black box 

Figure 8. Hardware Trojan comparator attack. 

Figure 9. Hardware Trojan attack on data and signature. 
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containing “2” (for attack type “2”) in Figure 7.  This resulted in 
modifying a reasonably significant bit of the BCG data right before 
signature regeneration, leading eventually to an incorrect 
Signature 2.  Once the regenerated signature (Signature 2) was 
compared to the analog-based signature (Signature 1), the 
comparator found that the signature difference exceeded the 
threshold and thus declared a mismatch so that the release logic 
prevented the transmission of the data and asserted the alarm signal. 

Also, another simulation of the same attack type, this time at the 
output of the encryption cipher, confirmed the need to decrypt the 
data and recreate the signature from the regenerated plaintext rather 
than directly from the input. 

6.1.3 Simulation of Attack Type 3 
To simulate attack type 3, the HT logic had to wait for the same 
trigger as in the previous attacks.  However, the HT now has two 
payloads (Figure 8) affecting two different points in the 
architecture.  Figure 7 shows the points at which we set the HT to 
attack.  We inserted the first payload (Payload 1 in Figure 8) at the 
output of the encryption cipher eventually leading to a modification 
in the regenerated signature.  Simultaneously, the inserted HT 
attacks the comparator output using a second payload (Payload 2 in 
Figure 8).  This payload forces the output of the comparator to show 
a match even when the compared signatures did not match. 

It is important to note here that the comparator testing logic is 
periodically checking for this specific case.  In our simulations, the 
periodicity was set to 16 iterations, i.e., the Test Mode in Figures 6 
and 7 is set to ‘1’ after 16 sets of data have been processed through 
the architecture.  The Test Mode is asserted for only one clock cycle 
where the system is stalled and the comparator output is checked 
for legitimate operation. 

Thus, the release logic might transmit altered encrypted data 
depending on when the HT is triggered.  However, performing the 
testing periodically can solve the problem if the sets of data 
between two consecutive tests (in our case, 16 sets) can be declared 
invalid if attack type 3 is detected (a multi-bit Alarm Signal can 
encode different types of alarm conditions, e.g., a specific bit 
encoding of the alarm could be used to indicate failure of the 
comparator testing logic). 

In our simulation, we triggered the HT after the processing of six 
iterations of data.  After an additional ten iterations and as soon as 
the Test Mode was asserted, the comparator testing logic read the 
result of the comparison and alerted the release logic to halt the 
transmission of the data while signaling the alarm. 

6.1.4 Simulation of Attack Type 4 
To simulate attack type 4, and as in previous types of attacks, the 
HT had to wait for a specific trigger condition.  Once the trigger 
was asserted, the HT attacked the low order bits of both the BCG 
input data and the analog-based signature as shown in Figure 9.  
This resulted in a modification of the values of Signature 1 and 
Signature 2.  However, this time the modifications were minimal 
(below the comparator’s threshold).  Thus, as expected, the 
comparator logic declared a match between the signals and the 
release logic released the encrypted bitstream of the modified data 
and signature. 

6.2 Synthesis Results 
Our synthesis results were performed using Synopsys Design 
Compiler version J-2014.09 for Linux and were mapped to the 
NCSU 45nm Base Kit Library [16]. 

Table 1 shows the area results of the main modules of our design 
post synthesis.  It is obvious that a significant amount of area of the 
architecture is dedicated to the encryption/decryption modules.  
The security modules that are inserted to regenerate and test for the 
integrity of the data consume, as expected, significantly lower area. 

Table 1. Synthesis Results. 

Module Area (square microns) 

Encryption Cipher (PRESENT) 5517 

Decryption Cipher (PRESENT) 5431 

16-bit Multiplier 1293 

16-bit Adder 141 

Comparator Logic 297 

Comparator Testing Logic 108 

Release Logic 2414 
 
To better show the area overhead imposed by introducing our HT 
detection technique, we present in Table 2 the overall area usage of 
the digital chip containing only the processing hardware and 
encryption/decryption units and compare it to the overall area of 
our modified architecture which includes the HT detection 
circuitry.  An overhead of about 13% is introduced. 

Table 2. Overall Area Consumption and Overhead. 

Design Area (square 
microns) Overhead (%) 

Regular Architecture 13,850 --- 

HT Detection Architecture 18,763 13% 

HT Detection Architecture 
(not considering digital 

signature generation part 
of the signal processing) 

18,763 35% 

 
However, it is to be noted that in our experiments, the digital chip 
contained only encryption and decryption blocks.  In more realistic 
scenarios, such a chip would contain other processing modules 
which require larger area.  For instance, we assume the digital 
signature generation (i.e. calculation of the vector sum) is 
considered to be part of the BCG processing hardware. If that is not 
the case, the overhead of the detection architecture will be 35% as 
shown in Table 2.  Our overall conclusion is that the percentage 
overheads reported in Table 2 can be considered pessimistic as 
increasing the overall chip area would cause a significant decrease 
in the overhead of our HT detection approach. 

Our current design achieves a maximum clock frequency of 
.  An analysis of the timing results shows that the 

multiplier that is used in the generation of Signature 2 in Figure 6 
falls along the critical path of our architecture.  We currently 
implement the squaring operations in our design using Synopsys 
DesignWare’s combinational carry save array multiplier.  As 
reported by Synopsys [17], this type of implementation has a delay 
of .  If the application requires a higher clock speed a 
designer can choose to map the multiplier’s logic to other 
implementations.  For example, DesignWare has a Booth-recoded 
Wallace-tree multiplier which has a delay of  (for a 16-bit 
multiplier).  In addition, DesignWare provides other options of 
pipelined and sequential multipliers.  Choosing between these types 
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of implementations allow the designer to make various area versus 
delay trade-offs. 

7. DISCUSSION 
In this paper, we do not discuss ways to foil attacks on the analog 
chip.  However, the fabrication of the analog chip could be 
performed in a “trusted fab” where the chip can then be expected 
to be HT free.  This option can be considered feasible as the analog 
chip can be fabricated using older, less expensive silicon 
fabrication technology.  

In addition, attacks on the output of the chip are not considered.  
Our reasoning is that attacks on the way out of the chip can be 
caught by the next stage as the signature will not match the data. 

One final comment can be made about the transmission of the 
signatures.  Figures 6 and 7 show our architecture without explicitly 
showing encryption of the signatures.  Clearly, sending the sign-
ature unencrypted might open an avenue of attack in later stages 
since an attacker may be able to exploit the unencrypted signature 
to reveal information about the encrypted data.  To prevent these 
types of threats, encrypting the signature can be done prior to 
transmission.  Specifically, in a more complete view of a System-
on-Chip (SoC) including logic for transmission packet formation, 
Figures 6 and 7 can be modified as shown in Figure 10 in an SoC 
implementation to ensure only a properly encrypted bitstream is 
transmitted.  Figure 10 shows multiple 16-bit analog-based 
signatures input to a FIFO buffer to form a block of 64-bit data that 
then can be fed to an encryption cipher, such as PRESENT [15], to 
form an encrypted bitstream that is ready for transmission. 

8. CONCLUSION 
In this work, we present a way of using analog signatures for HT 
detection on digital chips.  We specifically take advantage of 
known relationships between health sensor data to create an analog 
signature and then check for its validity in reconfigurable digital 
logic.  Our architecture targets small-sized HTs which, when 
triggered, attempt to modify the functionality of the design. 

Our functional simulation results verified the effectiveness of our 
architecture in capturing different types of HT attacks including 
ones that target the architecture at a single point and others that try 
to foil the detection mechanism by attacking in a coordinated 
fashion on multiple points in the design. 

Our synthesis results show that it is feasible to implement our HT 
detection architecture with minimal area overhead. 
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ABSTRACT 
Designing, programming and design space exploration of 

predictable Real-Time systems on Heterogeneous Multi-Core 
platforms is a very complex task. The increasing validation costs 
and time-to-market pressure creates a desire to build systems that 
are correct by construction.  

Formal description based on Model of Computations (MoCs) 
is a convenient way to create high-level models of such systems. 
The MoCs provide abstraction and high level modeling through a 
clear set of rules based on mathematics, which can be used as input 
for system synthesis. A formal synthesis flow would then ensure 
that the resulting real-time system is both predictable and correct 
by construction, provided that all transformations used in the flow 
can be verified/trusted. 

In this paper we show how a Real-Time computation node in 
an MPSoC system, described using the Synchronous MoC, can be 
transformed into a VLIW accelerator. The created accelerator is 
incorporated as a computation node in a heterogeneous multi-core 
system implemented on an FPGA. 
   

1. INTRODUCTION 

As we approach the Sea-of-Cores/Processors era [1], System-level 
design (SLD) is considered the next frontier in electronic design 
automation (EDA) [2]. To successfully navigate this sea, new 
design methods for instantiating, configuring, programming, and 
validating these systems, together with automatic methods for 
exploring the design space, is needed. In SLD, resources are 
defined in terms of abstract functions (system behavior) and blocks 
(system architecture). Design targets include both software (SW) 
and hardware (HW), which in many cases is generated 
automatically to guarantee correct functionality, with design 
properties close to optimal performance and resource utilization. 

Using a formal description based on Model of Computations 
(MoCs) is one way to achieve correctness by design. A MoC 
provide abstraction and a clear definition of the systems behavior, 
in the sense that the MoC describe the semantics of computation 
and concurrency of the processes in the system, i.e., how the 

computations communicate, e.g. they are used to model the 
abstraction of time explicitly [3]. The synchronous MoC is of 
particular interest, since it allows for description of systems 
reacting periodically within strict time bounds, which can be used 
to describe real-time oriented applications.  

ForSyDe (short for Formal System Design) is a language 
defined for system modelling [4][5][6]. It is based on the functional 
programming paradigm, and allows the designer to model a system 
as a set of communicating concurrent processes. It is a Multi-core 
ignorant ESL based on SystemC. With each function, a process 
constructor is associated, that determines its Model of 
Computation. When the design is ready, one of several 
backends/platforms is selected for implementation. Currently, they 
support GPGPUs, the CompSoC platform from TU Eindhoven, the 
NoC-System Generator from KTH, and direct synthesis to VHDL.  

In this work, we have selected the NoC-System Generator 
(NSG) tool from KTH for generating the target platform. The NSG 
tool is a fast-prototyping tool that allows a designer to quickly 
explore the design space and get a working MPSoC implementation 
running on soft-cores on an FPGA in very short time. It has a GUI 
that allows a designer to directly specify the functionality in C, 
either by dropping C-code in the right section of a process 
constructor, or by importing C-code generated by third-party tools 
like Simulink [7][8][9][10]. 

However, when implementing Real-time systems on FPGAs, 
we often run in to the situation that the combined Worst Case 
Execution Time (WCET) of the tasks/processes running on the soft 
CPUs are too slow compared to the real-time constraints. If no more 
soft processors can be added to the system due to size/power 
constraints, it is necessary to move the computations to an 
accelerator. In the ForSyDe methodology/philosophy, this should 
be implemented as a correct-by-construction transformation, which 
provides seamless integration of the produced accelerator into the 
existing system. 

In this paper, we show how a computation node in an MPSoC 
can be transformed into a Very Large Instruction Word (VLIW) 
accelerator using a variant of standard High-Level-Synthesis 
(HLS). The starting point is a Synchronous model of an industrial 
relevant example, modelled using ForSyDe design principles, and 
then implemented as a transformation compatible with the 
ForSyDe/NoC-System Generator backend tool. After 
transformation, the VLIW accelerator is stored as an IP Block, and 
put back into the NSG design flow, where it replaces the original 
node. We also show that the resulting system fulfills the real-time 
constraints. 
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2. HLS vs VLIW generation 

Most methods for designing accelerators start at the processor level. 
They typically analyze the given C-code and try to identify proper 
functions that are suited for acceleration. The identified functions 
are then synthesized and the control of them is stored back into the 
assembly code using unused codes in the instruction set or using 
predefined custom instructions. An example of the former is the 
Molen co-processor [11], targeted for Xilinx, while the latter is 
used in the Altera NIOS processor [12]. The main advantage of 
these approaches is the tight integration of the accelerated function 
with the processor. The major problem with them is that 
transferring parameters and results to and from the functions take 
considerable processing time. Also, interrupts on the main 
processor requires special handling while an accelerated function is 
executed. 

Other approaches, like [13] start with an implementation of a 
VLIW, analyze the C-code, and then try to optimize the 
implementation of it by removing unused wires and registers. The 
advantage with this approach is that it becomes more similar to 
HLS, while the disadvantage is that they still require more bits to 
store the entire instruction space of the VLIW. The No Instruction 
Set Computer (NISC) processor approach [14][15][16], takes this 
method one step further in the direction of HLS by deriving the 
microcode directly, by using the control bits of any given data path 
as the instruction words, and then compiles the C-code for the 
intended data path. 

Our approach is similar to the NISC-approach in the sense that 
we also let the operators residing in the data path decide the 
instruction set, with the difference that we have chosen to encode 
the control bits for each operator into an instruction to get a unified 
instruction width, which simplifies VHDL code generation. 

Another difference with our approach is the view of the 
Register File (RF). In the NISC-approach, the number of registers 
in the RF is restricted. We do not have this restriction. Rather, the 
size of the register file is adjusted to the number of required 
registers to implement the functionality. This is not optimal from 
an area point of view, but it lets us maximize the throughput of the 
accelerated algorithms, since temporary variable storage in an 
external memory is no longer needed. 

Removing the RF restriction also removes the final difference 
between NISC-architectures and High-Level Synthesis. In our 
opinion, there is no fundamental difference between compiling a C-
program towards a VLIW NISC with unrestricted number of 
registers and implementing it using HLS.  

Consider the data paths shown in Figure 1 below. In the HLS 
case, each operation in the data path is supplied with two operands, 
either from the registers in the design, from an input port or it is set 
to some constant. The result is stored back to a register or forwarded 
to an output port. Thus, the set of all registers can then be viewed 
as a (multi-ported) register file, where the enable bits of the 
registers correspond to the addressing bits of the registers in a 
register file used in a VLIW. In the same way, we can view the 
operations in the data path as the operations in the execution 
pipelines of the VLIW. An operation not used in a control stage of 
the HLS is equivalent to a NOP-instruction in the VLIW case. As 
the number of implemented instructions grows, and more and more 
registers are used in the RF, the HLS data path becomes more and 
more similar to a VLIW data path. Thus 

 
 

 
lim

# →
 

 

Figure 1. Typical HLS Datapath vs a typical VLIW Datapath 

3. ForSyDe/NSG Synchronous MoC Semantics 

In the ForSyDe Methodology, a system is described as a set of 
concurrent communicating processes. Each process has a process 
constructor associated with it, where the type of constructor 
decides its Model of Computation, i.e., the execution semantics of 
the computational part of the process and how it communicates data 
over a communication channel. Each process constructor has an Init 
function and a Main function. The Init function specifies what 
should happen when booting the system, while the Main function 
specifies what should happen during normal operation. The 
functions are not allowed to have side effects, i.e., no global 
variables are allowed.  

Simulink [17] is a system-level language favored by industry to 
describe real-time control systems. Caspi et al [18] identified the 
periodic execution semantic of a subset of Simulink blocks, by 
transforming the Simulink model into an intermediate layer, 
described in the language Lustre [19], which executes functions 
periodically triggered by a synchronous signal.  

Although automated mapping and refining of system level 
models onto MPSoCs has been shown to be very difficult to 
achieve[20], Robino et al showed in [10] how Simulink system 
models can be imported to the ForSyDe/NSG-tool, and then 
manually mapped to a MPSoC implementation. They extracted the 
C-code produced by the Embedded Encoder, and dropped it into a 
Synchronous MoC (SMoC) process constructor. The 
implementation of the SMoC itself was done using their Heartbeat 
methodology [9], which suggests using a globally distributed 
signal/clock together with a bare-metal SW layer to provide the 
synchronization to processes run on the MPSoC’s CPUs. 

 Their method is similar to the Time Triggered Architecture 
(TTA) model [21], which enables events to happen periodically 
during specific time slots. However, the TTA model requires an OS 
to support the synchronization between Processing Elements (PEs) 
of the target MPSoC, thus requiring large memories, in contrast to 
the low memory overhead imposed by the bare-metal OS of the 
NSG-tool. 

 The semantics of the Synchronous MoC implementation in the 
Heartbeat Methodology is similar to how Synchronous HW is 
functioning. The Worst Case Execution Time (WCET) of the 
processes correspond to the Critical Path in the combinational part 
of a circuit, while the communication channels correspond to 
registers placed between the combinational parts. The Worst Case 
Communication Time (WCCT) on the communication channels 
corresponds to the setup time of the registers plus the propagation 
delay on the wires. The reset signal to the registers corresponds to 
an initial value function that the processes execute while the 
processor is booting, see Figure 2, below. 
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4. VLIW accelerator generation 

4.1 The Calc2HW transform 

When a designer uses the NSG-tool to generate an MPSoC 
system for an FPGA platform, the tool generates the corresponding 
image of the system in a form understandable by the target FPGA 
technology (mhs-files for Xilinx, sopc/qsys-files for Altera), sets 
up the appropriate SW-structure so that it can be compiled, and 
instantiates any IP-blocks used in the system, including the NoC 
structure implementing the communication system. After logic 
synthesis, the FPGA can be configured with the system. The 
resulting system is easy to debug due to the well-defined semantics 

of the process constructors, letting the designer focus on how to get 
the functionality right. The ForSyDe/NSG design flow for creating 
the system is shown in Figure 3.  

In the case that the Real-Time constraints of executing the 
processes on the CPUs on the platform cannot be met, an 
accelerator of the culprit process(es) needs to be created. This can 
either be done using 1) third-party tools, 2) existing HLS tools 
available in the target FPGA technology, or 3) inserted by hand. 

We have defined a transformation that allows to transform 
synchronous ForSyDe/NSG C-processes, that contain pure 
calculations, into a NISC-style VLIW accelerator using a variant of 
standard High-Level Synthesis. To allow seamless integration with 
the rest of the system, we use the streaming Direct Access Port 
(DAP) provided by the NoC’s Resource Network Interface (RNI), 
and replace/accelerate everything residing in the target node. The 
generated VLIW is stored as an IP Block, and then put back into 
the NoC, replacing the original node, before performing logic 
synthesis. The synthesis process is outlined in Figure 4. 

4.2 VLIW Synthesis Process 

After running the ForSyDe/NSG-tool, all SW process files end 
up in a sub-directory of the target directory. Besides the C-code for 
the processes, it also contains a software_configuration.h file that 
is generated by the NSG-tool. It contains information about how 
the communication channels are mapped on the RNI of the NoC. 
This information is parsed together with the rest of the C-code, and 
a Directed-Acyclic-Graph (DAG) is built of each Init and Main 
function in the process file. All assignments must be pure 
expressions, where the result is stored in a double precision floating 
point variable. Hierarchical function calls, for-loops and integer 
arithmetic are not currently supported in the current 
implementation. Port accesses are translated into STORE-
instructions that directly access the RNI memory through the DAP 
and communication primitives are translated into SEND-
instructions. If-statements are translated to CMP-instructions that 
set the Sign and/or Zero flag. All instructions have a conditional 
field that tells whether or not it should be executed conditionally 
based on these flags. 

After the DAGs of the functions have been built, the Init 
functions are scheduled first, and then the SEND-instructions are 
scheduled to ensure that they end up last. The last used memory 
position used for the Init functions is stored to remember the start 

F(x) Communication 
Channel 

Init function Main Function 

SMOC 

F(x) 

Figure 2. SW Process execution semantics for a Synchronous Model 
of Computation (SMOC) in the Heartbeat Methodology, modelled 
as a HW circuit equivalent. 
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Figure 4. VLIW Synthesis process 
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address of the Main code. The procedure is then repeated for all 
Main functions.  

Instructions are scheduled using an ASAP-methodology, 
described later in section 4.4, with a preference to lower execution 
pipe numbers. An instruction can never be scheduled earlier than 
the time slot where it is written to a register, nor before the start of 
the function type it belongs to (Init/Main). In case of scheduling 
conflicts (result is not available yet, conditional boundary, etc), 
NOPs are inserted, and the instruction scheduled at a later time step. 
A new instruction can replace an earlier inserted NOP. Due to its 
large size, only a single division unit is allowed. ADD/MULs are 
relatively small, so each Execution pipeline is allowed to have one 
each.  

After all functions have been scheduled, registers are assigned. 
A new register is allocated whenever needed, and de-allocated 
when it is not used anymore, making sure that the number of used 
registers never exceeds the number of maximum alive variables. 
Global variables that should remember their value from each 
execution round are kept alive across the iterations. The register 
allocation algorithm is described in detail in section 4.5. 

The resulting schedule is used to configure and generate the 
VLIW. The instruction schedule is checked to determine the 
number of unique instructions. For each used instruction type, an 
instruction code is assigned. Thus, the VLIW will never use more 
instruction codes than necessary, making it a NISC style VLIW.  

4.3 Target VLIW Architecture  

The target VLIW architecture is shown in Figure 5 above. It 
contains as many execution pipelines as needed, either because of 
timing constraints or because of user constraints. The generated 
accelerator contains an FSM that handles the communication with 
the RNI of the NoC. The RNI has a Direct Access Port (DAP) that 
allows streaming applications to read and write data quickly. Only 
one memory access can be done per VLIW word. 

Whenever a Heartbeat of the system happens, the RNI sends an 
interrupt signal to the VLIW. The first time this happens after 
system reset, the Init function is executed. For all IRQs after this, 
the Main function is executed. 

The VLIW execution pipelines consist of 15 execution stages, 
of which 10 are execution stages used by the floating point 
operators. The LM0 initiates a Port read if required. The LM1 stores 
the result of the read in a FIFO. The FOP1 stage forwards the 
addresses to the RF files and the constant ROMs. Constants are 
always positive when stored and accessible from all pipeline stages 
simultaneously; i.e., they are synthesized to one logic circuit per 
execution pipeline. 

In the FOP2 stage, the accessed values are routed to their 
respective destination. The functions are executed in the EXECn 
stages. The number of stages is determined by the minimum 
number of pipeline stages that is required to run the ADD, MUL 
and DIV floating point units at the available system clock. At 
present, the Calc2HW transformation only functions for Altera 
platforms. The minimum number of execution stages their floating 
point IPs has in common is ten. 

During WB, the results are stored back, either to a port 
(memory access) or to a register. Two reads and one write is 
allowed to any RF at any one time (multiple accesses to the same 
register are allowed). Each execution pipeline has one register file 
(RF) associated to it. To save one crossbar, the execution pipelines 
writes only to its own RF.  

Results written to output ports are stored in an output queue. 
The FSM handling the DAP-port prioritizes read accesses since the 
execution pipeline cannot be stalled; values to output ports are 
written whenever an empty slot is available.  

4.4 Scheduling Algorithm 

The ScheduleDAG algorithm, shown in Figure 6, takes the 
instructions in the order they were compiled and assigns them to an 
execution pipeline. The insertion place is the earliest place that it 
can be scheduled. The pipe_nr is determined by the 
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Figure 5. Target VLIW architecture. 

ScheduleDAG():: 
   for(i=0;i<nr_of_ instructions_in_dag;i++) { 
      if (Instr(i)!=SEND) { 
         earliest_condition_start=base_earliest_start; 
          if (Instr(i)->ConditionalInstruction()) { 
               earliest_condition_start=FindConditionInDAG(Instr(i)); 
         }; 
         earliest_start_op1=VariableLastWrite(Instr(i)->Op1()); 
         if (earliest_start_op1==-1) {// No dependencies 
             earliest_start_op1=base_earliest_start; 
         } else { 
             earliest_start_op1+=WriteBackLatency; 
         } 
         … // repeat for op2 
         earliest_start=min(earliest_start_op1,earliest_start_op2); 
         earliest_start=max(earliest_start,earliest_condition_start+1); 
         earliest_start=max(earliest_start,process_earliest_start); 
         new_earliest_start=CheckConflicts(Instr(i), 
                                                                  earliest_start,nr_of_pipes); 
         if ((pipe_nr<0) && (earliest_start==new_earliest_start))  
              new_earliest_start++; // This line is full 
         while(earliest_start!=new_earliest_start) { 
              earliest_start=new_earliest_start; 
              new_earliest_start=CheckConflicts(Instr(i), 
                                                                  earliest_start,nr_of_pipes); 
              if ((pipe_nr<0) && (earliest_start==new_earliest_start))  
                   new_earliest_start++; // This line is full 
         }; 
         PadPipeWithNopsUntil(pipe_nr,earliest_start); 
         AddInstructionToPipe(Instr(i),pipe_nr,earliest_start); 
      } 
   } 

Figure 6. Pseudo code of the ScheduleDAG Algorithm 
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CheckConflicts() algorithm, which checks the current VLIW 
instruction line to see if it is allowed to schedule the instruction to 
a pipe on that line. If there is a conflict, the algorithm returns the 
next potential line (i.e., earliest_start+1) that the instruction can be 
assigned to. The assignment rules that are checked against are: 

 
1. Max two different reads from the same RegFile. 
2. Max one Port read per VLIW line, unless they refer to 

the same port address. 
3. Max one Port write per VLIW line. 
4. If target variable value is “global”, i.e., its value should 

be kept across iterations, the instruction must be 
scheduled in the same pipe that already holds the 
variable. 

5. The target pipe must contain a NOP instruction, i.e., no 
instruction should have been scheduled to this pipe_nr. 

6. In case there are several choices, assign it to the place 
which has the lowest pipe_nr. 

4.5 The AssignRegisters()Algorithm 

The AssignRegisters() algorithm, shown in Figure 7, goes 
through all instructions in the schedule. If the instruction is reading 
a variable for the last time, the register associated with that variable 
is deallocated. In case a variable is used for the first time, a new 
register is allocated for it. Variables that should keep their values 
across iterations do not have a stop cycle. Registers are allocated 
the first time they are written to, and are then never deallocated. 

 

5. EXPERIMENTS 

The starting point of the experiments is a Synchronous model 
of an industrial relevant example, a Motor Controller (MC), 
modelled in the ForSyDe/NSG using ForSyDe design principles, 
and then implemented as an 2x2 NoC-based MPSoC on an Altera 
FPGA DE2-115 board. The equations for the MC are derived from 
the descriptions of the MC algorithm found in [22]. The block 
diagram of it is shown in Figure 8 a) below. The algorithm contains 
one access to a sin(x) and one cos(x)-function from the math.h 
library. These two functions were trapped in the C-parser and 
implemented as a MacLaurin-expansion using a series of 
ADD/MUL-operations for simplicity. The argument x was 
truncated to be within 2  during calculation. The example is 
compiled into 185 instructions, with little parallelism inside. Thus, 
it is expected that any schedule of it will contain a lot of NOPs. 

The SW view and the HW views of the base setup for the 
experiments in the next section is shown in Figure 8 b-d). The target 
node that will be replaced with an accelerator is the one in the upper 
right corner. As a reference to trace down bugs, the MC was cloned 
and run as pure SW in the lower left node. Both processes send the 
result to the lower right node, where the results were compared. For 
the design space explorations below, the MC process was cloned N 
additional times, and the clones put in the upper right corner of the 
system before the Calc2HW transformation was applied. 

5.1 Design Space Exploration 

In the first experiment we do a small design space exploration 
to figure out many MC algorithms that can be simultaneously 
implemented on one accelerator node without exceeding the real-
time constraint of the algorithm, i.e., 3125 clock cycles (ccs). The 
Figure 9 below shows how the WCET (in ccs) varies with the 
number of MCs and the number of execution pipelines. We can see 
that there is no problem at all to meet the WCET deadline on the 
VLIW, even if we let the VLIW run 20 MC algorithms 
simultaneously, by adding a second execution pipeline. 

In the next experiment, we try to figure out how the size of the 
system’s various parts will vary with the number of MCs, providing 
that we still only use a single execution pipeline. The results are 
shown in Figure 10. The total system size grows linearly with the 
number of MCs, as expected. The units are in kLUTs, kDFFs, and 
kMemoryBits for the MC’s values and kLUTs for the Total System 
Area. As we can see, the number of memory bits used in the MC is 
a step function, as expected. As soon as the number of registers 
passes a power of two, another bit is added to the Register File 
Memory address, which makes the number of memory bits used 
jump up one notch.  

In the final experiment, we do a design space to see how the 
area of the VLIW varies with the number of implemented MCs and 
the number of chosen execution pipelines in the VLIW. The 
smallest one is of course the single MC, with a single execution 
pipeline (x1). It is ~14.4 kLUTs. A double precision ADDSUB unit 
is ~1990 LUTs, a double precision MUL unit is ~1160 LUTs, while 
a DIV unit is ~7500 LUTs. The rest of the area is attributed to the 
Instruction ROM (synthesized into logic), and RF control. The 
largest one that we synthesized that still meet the timing constraint 
of 3125 ccs, is the MC20x2 with ~45 kLUTs. 

AssignRegisters()::{ 
    for(i=0;i<nr_of_pipes;i++)  {   
          nr_of_registers[i]=0; 
          used_nr_of_registers[i]=0; 
    } 
    for(i=0;i<nr_of_instructions;i++) { 
         for(j=0;j<nr_of_pipes;j++) { 
             if (Instr(i,j)!=NOP) { 

nr=VariableNr(Instr(i,j)->Op1());¨ 
if (Variable(Nr)->StopCycle()==i) { 
    (reg_nr,pipe_nr)=ObtainVariableAssignment(nr); 
    if (!(reg_nr,pipe_nr) already released on this line)) { 
         // Release register 
         reg_hash_table[pipe_nr][reg_nr]=-1; 
         nr_of_registers[pipe_nr]--; 
    } 
} 
…// redo above for Op2 before checking target 
nr=VariableNr(Instr(i,j)->Target()); 
if (Variable(Nr)->StartCycle()==i) { 
   // Allocate new register 
    nr_of_registers[j]++; 
    used_nr_of_registers[j]=max(nr_of_registers[j], 
                                             used_nr_of_registers[j]) ;  
    for(k=0;k<nr_of_registers[j];k++) { 

          if (register_hash_table[j][k]==-1) { 
             register_hash_table[j][k]=nr; 
            Variable(nr)->RegNr(k); reg_nr=k; 
            Variable(nr)->PipeNr(j); pipe_nr=j; 
             k=nr_of_registers[j]; 
        }; // if 
    }; // for 
    Instr(i,j)->RegNr(reg_nr); 
    Instr(i,j)->PipeNr(pipe_nr); 
}; // if 

            }; // if 
      }; // for 
   }; // for 
   for(i=0;i<nr_of_pipes;i++) { 
         total_nr_of_registers+=used_nr_of_registers[i]; 
   }; 
}; 

Figure 7. Pseudo code of the AssignRegisters() algorithm 
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5.2 Discussion 

The MC algorithm has a hard real-time requirement, it has to 
be run at 16 kHz, which means it has to compute its value within 
62.5 us (=3125 ccs). To achieve a predictable system, the flit 
insertion rate of the RNI was reduced to ensure that all flits will 
have time to reach its destination without conflicts. This resulted in 
a NoC bandwidth (BW) of 100 Mbit/s, the same as an external 
Ethernet connection. The MC sends four double precision values 
plus two 32-bit setup words, i.e., 320 bits per message. This means 
that the Best Case Communication Time (BCCT) is 3.2 us. In 
theory, this means that we can implement 19 MCs before exceeding 
the NoC BW. However, we also have to take into account when the 
first SEND command will be issued to the pipeline. This effectively 
restricts the implementation to 15 MCs.  

However, it should be noted here that a 2x2 NoC, with the SW 
placed as shown in Figure 8 b), will never experience any 
collisions. Thus, it will always be predictable, which means that we 
could without harm double the injection rate to the NoC. The NoC 
BW would then increase to 200 Mbit/s, and 30 MCs can be 
implemented per node. Now, we can also insert another accelerator 
in another node if there is enough space on the FPGA, then making 
it possible to run 60 MCs on the FPGA. However, since the board 
we have only have one Ethernet connection with 100 Mbit/s in and 
out of the FPGA, we cannot feed the VLIW with enough data to 
compute so many MCs, Thus, the main bottleneck of the 
implementation is how to get data in and out of the FPGA.  

Also, it should be noted here that the WCET of the SW 
implementation of the MC running on the comparison node is ~500 
us, ie., it is too slow to run at the required speed at a NIOS II/e. 
Comparisons with the SW node was done at 1 Hz, so that the 
alt_printf statements to the terminal in the receiving end would 
have sufficient time to complete its execution. 

6. CONCLUSION & FUTURE WORK 

In this paper, we have presented how processes implemented 
using the synchronous Model of Computation, running on a 
computation node on a NoC-based MPSoC System on an FPGA, 
generated by the ForSyDe/NSG-tool, can be transformed into a 
NISC-style VLIW accelerator. The transformation applied is a 
variant of standard High-Level-Synthesis (HLS), and the generated 
VLIW IP is used to replace the original Nios II/e computation node 
in the design. Since it is a done as a refinement transformation, the 
implemented accelerator will be correct by construction, once the 
transformation has been formally verified and properly integrated 
into the NSG-tool’s design flow. 

We have applied the transformation to an industrial relevant 
example, and performed a design exploration of the properties of 
the design if implemented on an Altera DE2-115 FPGA board. The 
resulting real-time system is guaranteed to be predictable since the 
NoC can be set up in a way that the traffic patterns on the NoC 
never collide, and there is only local SW running on the CPUs in 
the other nodes. 

6.1 Future Work 

In the current version of our transformation, only double-
precision floating point computations are considered. In the future, 
we will adapt our C-parser and VLIW generator to be able to handle 
a more elaborate set of types, like pixel structs, integer and fixed 
point data types. Further, we will also investigate what happens if 
we apply the transformation to smaller examples with large 
memory requirements, such as FIR filters and FFTs, so that we may 
compare the results with what other tools can produce.  

What most current HLS approaches have in common is that 
they all target integer/fixed-point implementations of DSP 
algorithms, with the primary objective to save area and get it to run 
a bit faster. However, from an industrial point of view, this 

Figure 8. a) Block diagram of the MC algorithm [22] b) SW view of experimental setup. c) HW view before Calc2HW transformation. 
d) HW view after Calc2HW transformation. 
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approach is slightly problematic. The whole idea with HLS from 
the beginning was to allow SW engineers to design HW 
accelerators. Converting double-precision Simulink-functions and 
algorithms written in Matlab to their fixed-point dittos is not a 
simple task. On the contrary, it requires quite some skills to get a 
numerical stable solution. In addition, recent studies have shown 
that for some applications, the fixed-point solution actually requires 
more energy for computing the same function than the same 
floating point version [23]. Thus, the study should also take design 
time and power consumption into account, to see which style of 
data types is more effective. 
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Room: Gasellen 
Sessions C1-C2-C3 
Session Chair: N/A 

 
 
 
 
 
 

        § Mastering Clock Domain Crossing challenges in FPGA Design 
 
Metastabilty from the intermixing of multiple clock signals is not modeled by simulation. 
Unless you leverage exhaustive, automated Clock Domain Crossing (CDC) analyses to 
identify and correct problem areas, you will inevitably suffer unpredictable behavior when 
you go to the lab or when the FPGA is used in the field. Automated CDC verification 
solutions are mandatory for multiclock designs. Questa CDC Solutions identify errors that 
have to do with clock domain crossings signals that are generated in one clock domain and 
consumed in another. 
 
Presenter: Stefan Bauer, InnoFour, Netherlands. 
 
 
 

        § Input power related challenges 
 
In modern embedded systems, reliability and uptime is also related to what happens on the 
incoming power wires. There may be power interruption or surges, bringing down the 
system and possibly also causing permanent damage. The seminar covers what may 
happen to your system and how to protect it and maintain safe operation. 
 
Presenter: Thomas Ginell, Linear Technology, now part of Analog Devices. 
 
 
 

§ Xilinx Cost-Optimized Portfolio Spartan-7, Zynq Z-7000S 
 
Presenter: Per Boström, Avnet Silica. 
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Room: Renen 
Sessions A5-A6-C4 

Session Chair: Lennart Lindh 
FPGAworld 

 
 
 
 
 
 

        § Interface and visualization for accelerometer in VHDL [15 min] 
 
During a course in the vocational education TEIS (applied electronics in embedded 
systems), I designed a system on an FPGA in VHDL on the platform BeMicro MAX 10. The 
system logs an accelerometer's measured values and communicates via SPI. This logging is 
displayed on a VGA screen. The construction contains a small custom made processor that 
runs the entire system and manages the SPI bus, VGA drawing, and the peripheral devices. 
 
Presenter: Anders Axelsson, Sweden. 
 
 
 

        § Study on usage of free IP for serial communication in the context of 
Cyclone-V SoC HPS/FPGA and Linux [15 min] 
 
The study is about how to use free IP for serial communication like SPI, I2C and UART 
implemented in the FPGA part of a CycloneV SoC together with software running under a 
Linux yocto system in the HPS. 
 
To perform this study two different CycloneV SoC Developments boards were connected 
using three serial communication interfaces, SPI, I2C and UART. The test application 
transfers data in real time autonomously between the two boards while sampling input data 
to be transmitted from slide switches and presenting received data onto LEDs. 
 
Presenter: Magnus Karlsson, Innowicom System Solutions AB / AGSTU, Sweden. 
 
 
 

        § Intel High Level Synthesis 
 
Increasing abstraction level when designing with FPGA may give significant productivity 
gains in both design and verification phase of a project. Join this session to learn more 
about Intel's HLS compiler due to release with Quartus 17.1 later this year. We will explain 
the fundamentals and give a little demo. 
 
Presenter: Nikolay Rognlien, Arrow. 
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Room: Räven 
Sessions C5-C6 

Session Chair: Hichem Belhadj 
Microsemi Corp., USA 

 
 
 
 
 
 

        § Context-Aware Logic Replication for Higher Speed and Lower Power 
 
Several designs with timing hurdles include large number high fanout nets that cause high 
delay penalties and routing congestion. This paper proposes a novel approach to tackle the 
logic replication and brings relief to the timing not only to the high fanout net, but also 
considers the logic context to ensure optimal logic replication. 
 
Presenter: Microsemi Corp., USA. 
 
 
 

        § Security-Conscious FPGA Design:  
 The Rule and Not the Exception Anymore! 

 
This paper intends to bring awareness of the MUST nature of considering security as the 
primary FPGA design goal by architects, design leads, engineers, and procurement/supply 
management teams. More importantly, Corporate Executives that care about their business 
and its reputation can no longer blame security breaches on their design engineers, or their 
IT team, it is their responsibility to mandate “all-out security schemes” to be implemented, 
to hire security experts, and to plan education programs for their organization . The bulk of 
the paper provides solutions and recommendations to help implement “comprehensive 
security-aware”-design. 
 
Presenter: Microsemi Corp., USA. 
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Room: Gasellen 
Sessions A7-A8 

Session Chair: N/A 
 

 
 
 
 
 
 

        § Common RTOS-related bugs - How avoid and detect 
 
This presentation will feature a commercial product that we sell (Tracealyzer) but this it is 
not a pure product presentation. Instead, we use screenshots from Tracealyzer to explain 
relevant RTOS concepts. 
 
A longer presentation can be seen at 
https://percepio.com/2016/12/14/common-rtos-related-bugs-how-avoid-and-detect/ 
 
Presenter: Johan Kraft, Percepio AB, Sweden. 
 
 
 

        § FPGA in Neuroscience 
 
In neuroimaging, the computational demand on the image processing pipelines is 
increasing as new methodological methods are improved. One computationally demanding 
method is to look at global brain connectivity in fMRI (functional MRI), where the brain 
activity of each voxel in the 3D brain volume is correlated over time with every other voxel 
to obtain a global measure of connectivity. Here, we look at how OpenCL on Intel Arria 10 
FPGA can be used for parallel processing of fMRI data. 
 
More information: One commonly used tool for global brain connectivity is 3dTcorrMap that 
comes with the software package AFNI. This tool is available in an OpenMP version to 
utilise multi-core processors. We have written our own custom made tool for global brain 
connectivity written in C and OpenCL for the Arria 10 FPGA and then compared the 
performance with the OpenMP version of 3dTcorrMap running across 4 CPU cores. 
 
Presenter: Lars Forsberg, Synective AB, Sweden. 
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FPGAworld 2017 @ Copenhagen
 
 

Technical University of Denmark 
SCION, Building 372, Diplomvej Lyngby 

Denmark 
 
 

Conference Programme 
 
 
 
 
 
 
 
 

08:30  Registration 
 
 

09:00  Conference opening 
 Lars Dittmann, Technical University of Denmark 
 and Lennart Lindh, FPGAworld 

 
 

09:15  Key Note Session 
 Acceleration of Convolutional Neural Networks in FPGAs 
 Hans Holten-Lund, Prevas AB, Denmark 

 
 

10:00  Coffee Break & Exhibition 
 
 

10:30  Parallel Sessions 
 
 

12:00  Lunch Break & Exhibition 
 
 

13:00  Mike Dini Talk 
 FPGA events during the year that has gone and gossips 

 
 

13:30  Parallel Sessions 
 
 

14:30  Coffee Break & Exhibition 
 
 

15:00  Parallel Sessions 
 
 

16:00  Panel Discussion 
 What for skills & knowledge do a FPGA designers need today? 

  Moderator: Rolf Sylvester-Hvid, Aktuel Elektronik (Danish Magazine) 
 
 
 
 
 
 

The exhibition will be open during the day. 
Coffee will be served in the exhibition area. 

 
 
 
 
 
 
 
 

34



 

 

Room: N/A 
Key Note Session @ Copenhagen 

Speaker: Hans Holten-Lund 
Prevas AB, Denmark 

 
 
 
 
 
 

        § Acceleration of Convolutional Neural Networks in FPGAs 
Hans Holten-Lund, Prevas AB, Denmark 

 
The keynote presentation will discuss some of the issues we face as FPGA designers when 
tasked with the computational loads involved in signal processing. New tools are appearing, 
aiming at making it easier to design signal processing blocks. Convolutional Neural 
Networks share many techniques with more traditional signal processing. Explore tradeoffs, 
design-time vs performance. Floating-point vs fixed-point math. GPUs vs FPGAs. 
 
Hans Holten-Lund, is a Senior FPGA Designer at Prevas, and has a Ph.D. and M.Sc. EE 
from IMM, Technical University of Denmark. He has worked mainly on FPGA design for 
phased array ultrasound scanners, and and other embedded FPGA based systems, 
including computer vision. Also has industry experience with multi-gigabit networks and 3D 
computer graphics.  
 
A longer CV is available here: https://www.linkedin.com/in/hans-holten-lund-a3a53114/  
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Room: N/A 
Sessions C1-C2-C3 

Session Chair: Lennart Lindh 
FPGAworld 

 
 
 
 
 
 

        § Mastering Clock Domain Crossing challenges in FPGA Design 
 
Metastabilty from the intermixing of multiple clock signals is not modeled by simulation. 
Unless you leverage exhaustive, automated Clock Domain Crossing (CDC) analyses to 
identify and correct problem areas, you will inevitably suffer unpredictable behavior when 
you go to the lab or when the FPGA is used in the field. Automated CDC verification 
solutions are mandatory for multiclock designs. Questa CDC Solutions identify errors that 
have to do with clock domain crossings signals that are generated in one clock domain and 
consumed in another. 
 
Presenter: Stefan Bauer, InnoFour, Netherlands. 
 
 
 
 

        § The FPGA security challenge: high assurance on low cost devices 
 
Traditionally, in secure chip enrollment a unique private key is generated and burned into 
one-time programmable memory and so relies on expensive continuous protection of an 
entity’s private key. This presentation is challenging traditional cryptography by introducing 
a truly private keyless technology – a solution to the ubiquitous problem of managing and 
protecting private keys. 
 
Presenter: Thomas Ginell, Linear Technology, now part of Analog Devices. 
 
 
 
 

        § Intel High Level Synthesis 
 
Increasing abstraction level when designing with FPGA may give significant productivity 
gains in both design and verification phase of a project. Join this session to learn more 
about Intel's HLS compiler due to release with Quartus 17.1 later this year. We will explain 
the fundamentals and give a little demo. 
 
Presenter: Nikolay Rognlien, Arrow. 
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Room: N/A 
Sessions A1-A2 

Session Chair: Lennart Lindh 
FPGAworld 

 
 
 
 
 
 

        § Constrained Random and Functional Coverage for VHDL testbenches 
controlled in a structured manner 
 
OSVVM provides a good library for CR and FC. But how should we apply this in a TB to 
avoid the normal verification traps? 
 
- Bad overview 
- Bad readability 
- Bad maintainability & extensibility 
- Inefficient reuse 
 
Even most well-structured TBs do not sufficiently avoid these problems. 
  
This presentation will show how easy it is to combine OSVVM and UVVM to get a ‘Unified 
VHDL Verification Methodology’ that provides advanced CR and FC, - and at the same time 
promotes overview, readability, maintainability, extensibility and reuse. 
 
Presenter: Espen Tallaksen, Norway. 
 
 
 

        § Portable Stimulus Specification 
 The Next Big Wave in Functional Verification 

 
In this paper we will describe the upcoming proposed standard for "Portable Stimulus 
Specification" (PSS) from Accellera. We will show how a single model of stimulus and 
scenarios can be re-used across different environments such as High-level C models, UVM 
simulations or even embedded SW, thus providing the verification engineers with a unified 
way to model interaction with complex SoC's or FPGA's containing CPU cores and 
embedded SW. 
 
More information: Accellera has been working on the new proposed PSS standard since 
2014. At DAC 2017 the Working group released the first "Early Adopter" version of the 
standard. This new proposed standard has received tremendous amounts of interest from 
the industry - at DAC and DVCon the seminars about PSS were completely overbooked and 
only standing room was available. 
 
For more information please see http://accellera.org/news/press-releases/244-accellera-
portablestimulus-early-adopter-specification-now-available-for-public-review 
 
Presenter: Staffan Berg, Sweden. 
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Session Chairs: Lennart Lindh 
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        § Use of FPGA in high speed networking 
 
Silicom Ltd. is an industry leading provider of high performance networking and data 
infrastructure solutions. At Silicom we are determined to help our customers boost their 
performance using the latest FPGA technology from both Xilinx and Altera. 
 
Our products offerings include Cyber Security, Network Monitoring and Analytics, Traffic 
Management, Application Delivery, WAN Optimization, High Frequency Trading, 
virtualization, cloud computing and big data markets. 
 
Presenter: Michael da Costa Carneiro, Silicom Ltd., Denmark. 
 
 
 

        § The Impact of Place and Route on FPGA Logic Synthesis 
 
For a quarter century, synthesizing an RTL design into an FPGA circuit has required only a 
loose understanding of the impact of Place and Route (P&R) software. By estimating route 
delays during Logic Synthesis based on graph properties and with accurate timing 
constraints, it was possible to achieve timing closure even for high-frequency clocks. In this 
presentation, we explain useful techniques to improve system performance and to achieve 
success in P&R more reliably. 
 
Presenter: Pieter J. Hazewindus, USA. 
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Call for FPGAworld Conference 2018 
 
 
 
 
 

Academic/Industrial Papers, Product Presentations, Exhibits and Tutorials 
September 18th, 2018, Stockholm, Sweden, Academic & Industrial programs 

September 20th, 2018, Copenhagen, Denmark, Industrial program only 
 
 
 
 
 

Submissions should be at least in one of these areas 
 
 
 
 
 

• DESIGN METHODS - MODELS AND PRACTICES 
o Project methodology 
o Design methods as Hardware/software co-design 
o Modeling of different abstraction 
o IP component designs 
o Interface design: supporting modularity 
o Integration - models and practices 
o Verification and validation 
o Board layout and verification 
o Etc. 
 

• TOOLS 
o News 
o Design, modeling, implementation, verification and validation 
o Instrumentation, monitoring, testing, debugging, etc. 
o Synthesis, compilers and languages 
o Etc. 
 

• HW/SW IP COMPONENTS 
o New IP components for platforms and applications 
o Real-time operating systems, file systems, internet communications 
o Etc. 
 

• PLATFORM ARCHITECTURES 
o Single/multiprocessor architecture 
o Memory architectures. 
o Reconfigurable Architectures 
o HW/SW architecture 
o Low power architectures 
o Etc. 
 

• APPLICATIONS 
o Case studies from users in industry, academic and students 
o HW/SW component presentation 
o Prototyping 
o Etc. 
 

• SURVEYS, TRENDS AND EDUCATION 
o History and surveys of reconfigurable logic 
o Tutorials 
o Student work and projects 
o Etc. 
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