

14th FPGAworld CONFERENCE

SEPTEMBER 19th-21st, 2017
STOCKHOLM + COPENHAGEN

EDITORS
Lennart Lindh, Ketil Røed, Vincent J. Mooney III, Johnny Öberg,

Johan Alme, Santiago de Pablo and Mohamed Shalan.

ACADEMIC PROCEEDINGS 2017

The FPGAworld Conference addresses all aspects of digital and hardware/software system
engineering on FPGA technology. It is a discussion and network forum for researchers and
engineers working on industrial and research projects, state-of-the-art investigations, development
and applications. The proceedings contain the academic presentations, a separate report contains
also the industrial presentations; for more information see www.fpgaworld.com.

SPONSORS

Copyright and Reprint Permission for personal or classroom use are allowed with credit to
FPGAworld.com. For commercial or other for-profit/for-commercial-advantage uses, prior
permission must be obtained from FPGAworld.com.
Additional copies of 2009 or prior Proceedings may be found at www.FPGAworld.com or at
Jönköpings University library (www.jth.hj.se).
© 2017 FPGAworld
 Personal or classroom use are allowed with credit to FPGAworld.com
 For commercial and/or other for-profit/for-commercial-advantage use,
 prior permission must be obtained from FPGAworld.com

ISBN 978-1-4503-5154-6

Proceedings of FPGAworld 2017
Index

Welcome .. 5

Academic Organization .. 6

General and Industrial Organization .. 7

Sponsors, Exhibitors and Product Presenters .. 9

FPGAworld @ Stockholm

Conference Programme ... 10

Key Note Session ... 11

Key Note Session ... 12

Sessions A1-A2-A3 .. 13

Sessions B1-B2-A4 .. 14

 § Use of Analog Signatures for Hardware Trojan Detection 15

 § An Synthesis of VLIW Accelerators from Formal Descriptions
 in a Real-Time Multi-Core Environment ... 23

Sessions C1-C2-C3 ... 30

Sessions A5-A6-C4 .. 31

Sessions C5-C6 .. 32

Sessions A7-A8 .. 33

FPGAworld @ Copenhagen

Conference Programme ... 34

Key Note Session ... 35

Sessions C1-C2-C3 ... 36

Sessions A1-A2 .. 37

Sessions C4-A3 .. 38

Call for FPGAworld Conference 2018 ... 39

Academic General Chairman’s Message

Welcome to the 14th edition of the FPGAworld conference! With the
dramatic shrinkage of chip technologies continuing to advance, capabilities
of FPGAs are only increasing their expansion into areas traditionally only
covered by ASICs. We cordially welcome you to this premier event mixing
industrial and academic perspectives in an open forum of debate and
inclusion.

As in previous years, this year the conference is again taking place in two
locations, Copenhagen (Denmark) and Stockholm (Sweden). Earlier
editions of FPGAworld have been organized in Finland (Tampere), India
(Udaipur), Germany (Munich) and Sweden (Lund).

The FPGAworld conference has academic reviewed papers, industrial
reviewed papers, keynote addresses and product presentations, resulting
in a fertile mix of presentations. FPGAworld also has in both locations
exhibitors as well as an occasional tutorials. This aims to cover an
increase in demand from the academic and industrial participants for FPGA
knowledge.

Please check out the website (http://www.fpgaworld.com) for more
information about FPGAworld 2017. In addition, you may contact Mia
(mia@fpgaworld.com) for more information about product presentations,
web advertisements, sponsoring, tutorials and exhibits. For academic and
industrial presentations, please see the FPGAworld website for more
information.

FPGAworld already now opens to receive suggestions for next year’s
conference in September 2018. We are interested in suggested keynote
speakers, web advertisements (year around), sponsoring, technical
papers, product presentations, student projects, exhibits and tutorials.
Submissions are open to students, academics and industrial professionals.
Together we can help make the FPGAworld conference exceed our best
expectations!

The organizers of FPGAworld would like to thank all contributors; we hope
that attendees will truly enjoy and benefit from the FPGAworld conference.

Sincerely,

Ketil Røed, University of Oslo, Norway

5

2017 Academic Organization

General Academic Chair
Ketil Røed, University of Oslo, Norway

Academic Program Chair
Johan Alme, University of Bergen, Norway

Academic Publication Chair
Santiago de Pablo, University of Valladolid, Spain

Academic Publicity Chair
Mohamed Shalan, American University of Cairo, Egypt

Steering Committee Members
Vincent J. Mooney III, Georgia Institute of Technology, USA
Peeter Ellervee, Tallinn University of Technology, Estonia
Johnny Öberg, KTH Royal Institute of Technology, Sweden
Lennart Lindh, Jönköping University, Sweden

Academic Programme Committee Members
Peeter Ellervee, Tallin University of Technology, Estonia
Reiner Hartenstein, TU Kaiserslautern, Germany
Leandro Soares Indrusiak, University of York, United Kingdom
Pramote Kuacharoen, National Institute of Development Administration, Thailand
Johnny Öberg, KTH Royal Institute of Technology, Sweden
Santiago de Pablo, University of Valladolid, Spain
Adam Postula, University of Queensland, Australia
Ketil Røed, University of Oslo, Norway
Timo D. Hämäläinen, Tampere University of Technology, Finland
Johan Alme, University of Bergen, Norway
Erno Salminen, Tampere University of Technology, Finland
Mohamed Shalan, American University of Cairo, Egypt
Shashi Kumar, Jönköping University, Sweden
Anshul Kumar, Indian Institute of Technology, IIT Delhi, India
Paul Kolin, Indian Institute of Technology, IIT Delhi, India
Vincent J. Mooney III, Georgia Institute of Technology, USA
Attiq Ur Rehman, University of Bergen, Norway

6

2017 General and Industrial Organization

Industrial Program Chair
Lennart Lindh, FPGAworld, Sweden

Industrial Programme Committee Members
Solfrid Hasund, Bergen University College
Kim Petersén, HDC, Sweden
Mickael Unnebäck, ORSoC, Sweden
Fredrik Lång, EBV, Sweden
Niclas Jansson, BitSim, Sweden
Göran Bilski, Xilinx, Sweden
Per Henricsson, Elektroniktidningen, Sweden
Espen Tallaksen, Bitvis, Norway
Tommy Klevin, ÅF, Sweden
Tryggve Mathiesen, InformASIC, Sweden
Fredrik Kjellberg, Net Insight, Sweden
Daniel Stackenäs, Altera, Sweden
Stefan Sjöholm, Realfast, Sweden
Torbjorn Soderlund, Xilinx, Sweden
Anders Enggaard, Axcon, Denmark
Doug Amos, Synopsys, UK
Guido Schreiner, The Mathworks, Germany
Stig Kalmo, Engineering College of Aarhus, Denmark
Hichem Belhadj, Microsemi, USA
Rolf Sylvester-Hvid, Aktuell Elektronik, Denmark
Tony Eriksson, Future Electronics, Sweden
Ann-Luise Vestrup Kristensen, Silica, Denmark
Mircea Alexandru Dabacan, Digilent Ro, Romania
Andreas Engberg, ConMed, USA
Abbas Bigdeli, Nicta, Australia
Siegfried Weigert, ibw, Germany
Nikolay Rognlien, Arrow Norway AS, Noway
Basavaraj Hooli, FPGAworld, India
Clint Cole, Digilent, USA
Gagan Puri, Coreel, India
Sudarshan Natu, Symphony, India
Udayprakash Raghunath Singh, SPSU, India
Yehoshua Shoshan, Innofour, Sweden
Hai Migdal, Gidel, Israel
Thorsten Trenz, Trenz Electronic GmbH, Germany
Gerd Prillwitz, Ansys, Germany
Juergen Kessler, BlackForest EDA, Germany
Willem Groter, HDL Works, Netherlands
Maurizio Casti, Thales Group, Italy
Andreas Schwarztrauber, MSC, Germany
Ben Liu, Digilent, Taiwan
Mattias Karlsson, Saab, Sweden
Antti Innamaa, Synopsys, Finland
Jacky Cheng, Huafan Tech, China
Mikko Rasa, Arrow, Finland
Thony Johansson, ÅF, Sweden
Henrik Eeckenhaut, Sigasi, Belgium
Mike Dini, Dini Group, USA
Jan Viktorin, RehiveTech, Czech Republic

7

Svend Modtgard, Wdiag, Germany
Soren Manicus, TekPartner, Denmark
Rune Domsten, IndesmaTech, Denmark

Industrial Program and Publicity Manager
Lennart Lindh, FPGAworld, Sweden

Sales, Registration and Finance Manager
Mia Lindh, FPGAworld, Sweden

8

Sponsors, Exhibitors and Product Presenters

ÅF, Sweden
DTU, Technical University of Denmark
Aktuel Elektronik, Denmark
Elektroniktidningen, Sweden
Prevas, Sweden
XILINX, USA
Linear Technology, USA
Dini Group, USA
Innofour, Netherlands
Terasic, Taiwan
Avnet Silica, Denmark
Avnet Silica, Sweden
Synective Labs, Sweden
Samtec, USA
Arrow, Europe
Motion Control, Sweden
AGSTU education, Sweden

In cooperation with ACM

9

FPGAworld 2017 @ Stockholm

Frösundaleden 2A
169 70 Solna, Sweden

Conference Programme

08:30 Registration

09:00 Conference opening – Room Renen
 Lennart Lindh, FPGAworld.

09:15 Key Note Session
 RF Data Converters in an All Programmable MPSoC FPGA
 Brendan Farley, XILINX Inc., Ireland

10:00 Coffee Break & Exhibition

10:30 Parallel Sessions

12:00 Lunch Break & Exhibition

13:00 Mike Dini Talk
 FPGA events during the year that has gone and gossips

13:30 Break

13:45 Parallel Sessions

14:45 Coffee Break & Exhibition

15:15 Key Note Session
 Programmable Technologies: New Challenges and New Opportunities
Hichem Belhadj, Chief Systems Architect, CTO Office, Microsemi Corp. USA

16:00 Go Home Drink in the Exhibition Hall

The exhibition will be open during the day.
Coffee will be served in the exhibition area.

10

Room: Renen
Key Note Session @ Stokholm

Speaker: Brendan Farley
XILINX Inc., Ireland

 § RF Data Converters in an All Programmable MPSoC FPGA
Brendan Farley, XILINX Inc.
Room: Renen

Recent state-of-the-art FPGAs have seen the integration of multi-giga-sample RF data
converters to address the requirements of next generation wideband digital
communications system. The keynote presentation will give an overview of the RFSoC
FPGA which integrates such functionality and will discuss some potential applications and
future trends.

Brendan Farley is a Senior Director of Engineering at US multinational technology
corporation Xilinx Inc. where he is responsible for Analog and Digital-RF Research and
Development. Brendan holds a Bachelor Degree in Electronic Engineering from Trinity
College Dublin and a Master of Science Degree in Technology Management from NUI
Galway.

11

Room: Renen
Key Note Session @ Stokholm

Speaker: Hichem Belhadj
Microsemi Corp., USA

 § Programmable Technologies: New Challenges and New Opportunities
Hichem Belhadj, CTO Office, Microsemi Corp., USA.
Room: Renen

Hichem Belhadj has been with Microsemi for close to 20 years. He is currently the Chief
System Architect at the CTO Office. Prior to joining the CTO Office, Hichem held executive
management positions in Corporate Sales and Field Systems and Applications at Microsemi,
Actel, IST, and INPG. Hichem holds a Master and PhD from the Polytechnic Institute of
Grenoble, France.

12

Room: Renen
Sessions A1-A2-A3

Session Chair: Kim Petersén
HDC, Sweden

 § The Impact of Place and Route on FPGA Logic Synthesis

For a quarter century, synthesizing an RTL design into an FPGA circuit has required only a
loose understanding of the impact of Place and Route (P&R) software. By estimating route
delays during Logic Synthesis based on graph properties and with accurate timing
constraints, it was possible to achieve timing closure even for high-frequency clocks. In this
presentation, we explain useful techniques to improve system performance and to achieve
success in P&R more reliably.

Presenter: Pieter J. Hazewindus, USA.

 § Portable Stimulus Specification
The Next Big Wave in Functional Verification

In this paper we will describe the upcoming proposed standard for "Portable Stimulus
Specification" (PSS) from Accellera. We will show how a single model of stimulus and
scenarios can be re-used across different environments such as High-level C models, UVM
simulations or even embedded SW, thus providing the verification engineers with a unified
way to model interaction with complex SoC's or FPGA's containing CPU cores and
embedded SW.

More information: Accellera has been working on the new proposed PSS standard since
2014. At DAC 2017 the Working group released the first "Early Adopter" version of the
standard. This new proposed standard has received tremendous amounts of interest from
the industry - at DAC and DVCon the seminars about PSS were completely overbooked and
only standing room was available.

For more information please see http://accellera.org/news/press-releases/244-accellera-
portablestimulus-early-adopter-specification-now-available-for-public-review

Presenter: Staffan Berg, Sweden.

 § Constrained Random and Functional Coverage for VHDL testbenches
controlled in a structured manner

OSVVM provides a good library for CR and FC. But how should we apply this in a TB to
avoid the normal verification traps?

- Bad overview
- Bad readability
- Bad maintainability & extensibility
- Inefficient reuse

Even most well-structured TBs do not sufficiently avoid these problems.

This presentation will show how easy it is to combine OSVVM and UVVM to get a ‘Unified
VHDL Verification Methodology’ that provides advanced CR and FC, - and at the same time
promotes overview, readability, maintainability, extensibility and reuse.

Presenter: Espen Tallaksen, Norway.

13

Room: Räven
Sessions B1-B2-A4

Session Chair: Ketil Røed
University of Oslo, Norway

 § Use of Analog Signatures for Hardware Trojan Detection

Malicious Hardware Trojans can corrupt data which if undetected may cause serious harm.
We propose a technique where characteristics of the data itself are used to detect
Hardware Trojan (HT) attacks. In particular, we use a two-chip approach where we
generate a data “signature” in analog and test for the signature in a partially reconfigurable
digital microchip where the HT may attack.

This paper presents an overall signature-based HT detection architecture and case study
for cardiovascular signals used in medical device technology. Our results show that with
minimal performance and area overhead, the proposed architecture is able to detect HT
attacks on primary data inputs as well as on multiple modules of the design.

Authors: Taimour Wehbe, Vincent J. Mooney, David Keezer, Omer T. Inan,
 Abdul Qadir Javaid, and Chinmoy Kulkarni, Georgia Institute of Technology, USA

§ Synthesis of VLIW Accelerators from Formal Descriptions
in a Real-Time Multi-Core Environment

Designing, programming and design space exploration of predictable Real-Time systems on
Heterogeneous Multi-Core platforms is a very complex task. The increasing validation costs
and time-to-market pressure creates a desire to build systems that are correct by
construction.

Formal description based on Model of Computations (MoCs) is a convenient way to create
high-level models of such systems. The MoCs provide abstraction and high level modeling
through a clear set of rules based on mathematics, which can be used as input for system
synthesis. A formal synthesis flow would then ensure that the resulting real-time system is
both predictable and correct by construction, provided that all transformations used in the
flow can be verified/trusted.

In this paper we show how a Real-Time computation node in an MPSoC system, described
using the Synchronous MoC, can be transformed into a VLIW accelerator. The created
accelerator is incorporated as a computation node in a heterogeneous multi-core system
implemented on an FPGA.

Author: Johnny Öberg, Royal Institute of Technology (KTH), Sweden.

§ Highly optimized streaming FFTs for FPGAs

In this work we show how streaming FFTs can be highly optimized on FPGAs. Compared to
previous state-of-the-art, we increase the throughput per slice by about a factor of five for
both Virtex-4 and Virtex-6 FPGAs without increasing the number of DSP blocks nor the
amount of memory used. The results are obtained by better utilizing the FPGA resources
rather than any novelty in the FFT algorithm nor the FFT architecture. Different
optimization levels are presented with the fastest ones operating at the maximum clock
frequency of the device.

Authors: Carl Ingemarsson, Petter Källström, and Oscar Gustafsson,
 Linköping University, Sweden.

14

Use of Analog Signatures for Hardware Trojan Detection
Taimour Wehbe1, Vincent J. Mooney1,2, David Keezer1, Omer T. Inan1,3 and Abdul Qadir Javaid1

1School of Electrical and Computer Engineering, 2School of Computer Science, 3Department of Biomedical Engineering
Georgia Institute of Technology, Atlanta, Georgia, USA

taimour.wehbe@gatech.edu, {mooney, dkeezer, omer.inan}@ece.gatech.edu, aqjavaid@gatech.edu

ABSTRACT
Malicious Hardware Trojans can corrupt data which if undetected
may cause serious harm. We propose a technique where
characteristics of the data itself are used to detect Hardware Trojan
(HT) attacks. In particular, we use a two-chip approach where we
generate a data “signature” in analog and test for the signature in a
partially reconfigurable digital microchip where the HT may attack.
This paper presents an overall signature-based HT detection
architecture and case study for cardiovascular signals used in
medical device technology. Our results show that with minimal
performance and area overhead, the proposed architecture is able to
detect HT attacks on primary data inputs as well as on multiple
modules of the design.

CCS Concepts
• Security and privacy~Embedded systems security • Security
and privacy~Hardware security implementation • Security
and privacy~Malicious design modifications • Security and
privacy~Security in hardware

Keywords

Hardware Trojans, Analog Signatures, Reconfigurable Logic,
Ballistocardiography

1. INTRODUCTION
The chip manufacturing process is becoming more and more dis-
aggregated leading to an increase in chip fabrication vulnerabilities
to malicious activities and alterations referred to in the literature as
Hardware Trojans (HTs). Effects of HT modifications can be
disastrous if the attack targets sensitive applications. Therefore,
hardware security, and more specifically, HT detection
mechanisms are gaining increasing popularity in recent years.

Embedded devices are typically constrained in terms of energy
consumption and computing power, making the process of
designing methods to catch HTs not a trivial task. Therefore, an
HT detection circuitry should try to provide the highest possible
security while maintaining low area and power overhead.

In this paper, we present a technique to capture ultra-small HTs
which attempt to modify the functionality of digital chips. These
types of attacks are not easily detected by other mechanisms due to
their extremely small size [5]. Our work is motivated by a health
monitoring application which captures heart signals and transmits
them for further processing and analysis [8]. The physiological
signals have a known relationship which we take advantage of to
create signatures that check for the integrity of the captured data.
Specifically, during data harvesting, we create analog-based

signatures, and then we check for the validity of these signatures on
a digital chip using reconfigurable logic to ensure that the chip has
no HT attacks and that the data’s integrity is maintained before
transmission.

The paper is divided as follows. Section 2 presents background and
prior work about concepts that are used throughout the paper.
Section 3 introduces our threat scenario. Section 4 discusses our
HT detection architecture in detail, and Section 5 presents possible
HT attacks and explains how our proposed architecture catches
them. Section 6 reports our simulation and synthesis results.
Finally, a discussion is presented in Section 7 before we draw our
conclusions in Section 8.

2. BACKGROUND AND PRIOR WORK
2.1 Hardware Trojan Attacks and Detection
Methods
Hardware attacks and specifically those related to Hardware
Trojans have been receiving increased attention in the past several
years. This is driven in a major way by industrial concerns about
the integrity of their chips, especially with the recent paradigm of
the Internet-of-Things (IoT). HT attacks on highly interconnected
embedded devices can cause severe damage.

A formal HT taxonomy has been introduced which divides HT
attacks according to three broad characteristics: (i) physical
characteristics, (ii) activation characteristics and (iii) action
characteristics (Figure 1) [2]. The (i) physical characteristics
divide up HT attacks according to their distribution on the chip,
their size, their structure and their type (parametric or functional).
The (ii) activation characteristics divide them into internally
activated HTs and externally activated ones. Externally triggered
Hardware Trojans wait for an activation signal coming from
outside the chip. Internally triggered ones can be classified into
two subtypes: (a) an always on HT and (b) a conditionally triggered
HT with the latter having the condition dependent on some logic in
the circuit or some sensor attached to the circuit. The (iii) action
characteristics divide the HT attacks according to their effect, i.e.,
whether the HT is going to leak information, corrupt functionality
and/or modify the circuit’s specification.

Several HT detection methods [1-7] have been proposed to address
specific types of the aforementioned attacks. These methods can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGAWorld’17, September 19–21, Stockholm and Copenhagen.
Copyright © 2017 ACM 978-1-4503-5154-6

Figure 1. Hardware Trojan taxonomy.

15

be broadly divided into side-channel analysis techniques, HT
triggering techniques, and correct functional verification [2]. For
example, the authors of [2,6,7] provide a recent survey of multiple
types of HT detection methods including methods that are based on
power analysis, timing analysis, HT activation mechanisms and
architecture-level detection. In addition, the authors of [1]
introduce an HT prevention and detection mechanism for integrated
circuits (IC) where they prevent a wide variety of HT attacks during
IC testing and during operation in the field.

In our previous work [3-5] we also addressed multiple types of HT
attacks by implementing an architectural-level detection
mechanism. Specifically, we designed signature-based HT
detection architectures to detect attacks that attempt to modify the
functionality of a digital chip by modifying the structural logic of
internal modules in the design.

2.2 Ballistocardiography
An alternative to the Electrocardiogram (ECG) measure of heart
activity is the Ballistocardiogram (BCG) which utilizes Newton’s
second law (), i.e., the reaction of the body to the pumping
action of the heart [8,9]. Specifically, given a properly
instrumented scale, three-dimensional forces can be non-invasively
captured to represent the cardiogenic vibrations of the body
[8,9,10]. The BCG reveals information about heart rate, etc., but,
unlike the ECG, the BCG but does not require electrodes or gel to
obtain a high fidelity measurement of the body. Figure 2 shows a
force plate measuring the BCG.
In this work, we use BCG sensors whose analog output values fall
within a range of to and have required accuracy
of four significant digits after the decimal. Thus, to cover the range
and provide the needed accuracy, we use signed 16-bit fixed-point
numbers. In some cases, values will be squared and added, in
which case the range of to needs to be supported. Thus,
in this paper we use a fixed-point format with the most significant
bit as the sign bit, the next bit as a representation of a value of 1 or
0, and the remaining 14 bits representing the fractional part of the
number.

3. THREAT SCENARIO
Figure 3 shows the main HT threat model that we consider in this
work. The HT is composed of trigger circuitry and a payload. This
model is representative of most prior work [1-7].

The trigger circuitry is responsible for waiting for an activation
characteristic to trigger the HT. The activation characteristic, as
described in Section 2.1 and as shown in Figure 1, can be externally
triggered or internally triggered. In our threat scenario, we consider
HT trigger circuitry which is based on a conditionally triggered
Trojan. As Figure 3 shows, a trigger circuitry could be composed
of a counter and minimal control logic. The counter is attached to
a rarely toggling node in the design such as a one coming from a
processing block. The counter is incremented every time the node
toggles. The control logic monitors the output of the counter and
asserts the trigger once the counter reaches a specific predefined
value. In addition, we assume in our threat model that once the HT
is triggered, it remains on indefinitely. That is because if an
attacker wants to intelligently turn on the HT for finite periods to
bypass specific detection techniques, the trigger circuitry (shown in
Figure 3) will have to be more complex resulting in an HT with a
larger size. Such types of larger sized HTs are beyond the scope of
our work and, as indicated in Section 2.1, can be caught by other
HT detection techniques [2,6,7].

The payload in our threat model is composed of an exclusive-or
gate that is connected to one of the data’s bits in a way such that
when the HT is triggered, the data bit is complemented resulting in
an attack on the data stream. For example, Figure 3 shows an HT
altering the most significant bit of Data[63:0].

In conclusion, we consider, as shown in bold face at each level in
Figure 1, small size HT logic which is conditionally triggered on
certain internal logic conditions or states able to be externally
activated by an attacker where the HT attack aims to alter the
functionality of the microchip [2]. The specific scenario involves
analog measurements of health sensors where the data have known
physiological relationships among the signals.

4. HARDWARE TROJAN DETECTION
ARCHITECTURE
To increase protection against HT attacks which aim to disrupt chip
functionality, we approach the overall embedded system design by
separating the analog measurements from the digital processing by
using a minimum of two chips as shown in Figure 4 [4]. The first
chip shown on the left of Figure 4 – “Chip 1: Analog chip” –
contains all of the analog components required for data acquisition.
For example, this might include most of the sensor hardware, some
filters, amplifiers, and analog-to-digital converters. The second
chip shown on the right-hand side of Figure 4 – “Chip 2: Digital
chip with embedded reconfigurable logic” – contains most of the
processing modules in digital logic. For example, the digital chip
can perform encryption/decryption on the data before it is sent to
the cloud. In this work, we take advantage of the security by design
approach where security is treated as a first class citizen in the
design process [11]. Thus, we incorporate critical security features
as early as we can in the design process of the data path.
Specifically, our architecture enhances security by the generation

Figure 2. BCG force-plate.

Figure 3. Hardware Trojan threat model.

16

of data signatures in analog. This not only enables checking the
integrity of the data as early as possible but also further complicates
the job of an attacker. An attacker trying to simultaneously modify
the data and its associated signature will now face much more
difficulty as the attacking team should now incorporate expertise in
both analog and digital designs.

4.1 Chip 1: Analog Chip
4.1.1 Strategy
A separate microchip focused on analog sensor components
enables the generation of an analog signature. This approach
provides a separate chip from the main digital computational
circuitry, thus complicating the efforts of an attacker.

4.1.2 Example
Figure 5 shows an example of an architecture of the analog chip of
Figure 4. Ballistocardiography (BCG) data harvested from sensors
are amplified and fed to bandpass filters for initial processing and
to improve the signal-to-noise ratio of the captured data. Normally,
data would be directly fed to analog-to-digital converters and
passed to digital logic for further processing on the same microchip.
In our approach, as the data is being harvested, we simultaneously
create an analog signature using the vector sum (i.e., square root of
the sum of the squares of the two BCG measurements) of the
captured data as shown in the bottom right-hand side of Figure 5.
One of the major reasons behind choosing the vector sum as an
analog signature is due to its importance and need in analyzing

BCG data in later stages [12,13]. In addition, creating such a type
of signature in analog is relatively simple due to its use of common
analog components (adders, squarers and square root
modules) [14]. The created analog signature is also fed to an
analog-to-digital converter, where the analog signature is sampled,
quantized, and fed to the digital logic of the second chip in Figure 4.

4.2 Chip 2: Digital Chip with Embedded
Reconfigurable Logic
4.2.1 Strategy
In our architecture, the goals of the digital chip are (i) encryption/
decryption, (ii) signature comparison testing and (iii) application-
specific computation. In order to test for the integrity of the data
before transmission, a digital version of the analog-based signature
is compared to what should be the same signature value
recalculated from the raw data. Additional confidence in the
encryption logic can be gained by decrypting the data (we assume
that in typical operation, the embedded system is either sending or
receiving data; thus, in the case of encrypting in order to send data,
the decryption unit is not needed for sending and so is available to
decrypt the encrypted data for test purposes). We perform the
signature testing in embedded reconfigurable logic making it harder
for an HT to attack our testing mechanism as the attacker would not
know the mechanism’s exact location prior to deployment. In
addition, reconfigurability allows our architecture to be more
flexible and scalable where the same digital chip can work with
multiple versions of the analog chip performing different types of
signature generation and testing. In summary, our testing
mechanism compares a digital version of the analog-based
signature arriving in a separate input from the analog chip to a
regenerated version of the signature value using raw data after
encryption and decryption. If the signatures do not match (within
a tolerance level due to possible low order differences in least
significant bits due to small variations which may occur in analog-
to-digital conversion), we activate an alarm signal.

Figure 5. Analog chip sampling data and generating vector sum as a signature.

Figure 4. Two-chip architecture overview.

17

4.2.2 Example
Figure 6 displays an example of an architecture for the digital chip
in our design approach. As mentioned in Section 4, this chip
contains most of the processing modules and encryption blocks. As
shown in Figure 6, the digital chip receives three data inputs from
the analog chip. The first two inputs represent BCG data
components, namely, (i) the BCG Head-to-Foot Data and (ii) the
BCG Dorso-Ventral Data [12,13]. The third input to the chip is the
analog-based signature which in our scenario is the vector sum (i.e.,
square root of the sum of the squares) of each sample of the BCG
data (i) and (ii).

Figure 6 compares the digital version of the analog-based signature
with the BCG raw data using reconfigurable logic as follows. First,
the 16-bit vector sum (i.e., the digital value of the analog-based
signature) is input to a 16 x 16 bit multiplier, operating as a squarer,
thus generating a 32-bit output. This value represents the sum of
squares of the two BCG data inputs. It is to be noted that since the
analog chip is sampling the BCG data using 16-bit analog-to-digital
converters and since our data is represented using fixed point
number values between -1 and +1, the 32-bit result of the multiplier
is truncated and the most significant 16-bits of the result are used
as inputs to the next stage with the fixed-point format described in
Section 2.2. The created 16-bit version of the sum of squares is
referred to as Signature 1 in Figure 6.

Simultaneously, the input set of BCG data is buffered and
concatenated to form blocks of 64-bits for transmission. Each 64-
bit block of data is then passed through an encryption cipher such
as PRESENT [15]. The encrypted data (ciphertext) is then passed
through a decryption cipher to regenerate the plaintext. The reason
for decrypting the ciphertext is to help detect HT attacks on the
encryption and decryption modules [5]. The regenerated plaintext
is partitioned and each data set is passed through a series of
multiplications and additions to recalculate the sum of squares of
the input data. This generated sum of squares of each data set is
referred to as Signature 2 in the block diagram. Signature 1 and
Signature 2 are then fed through a comparator logic. The
comparator logic, shown in Figure 6, performs the following:

� if (|Signature 1 – Signature 2| ≤ threshold)
 declare a match

� if (|Signature 1 – Signature 2| > threshold)
 declare a mismatch

where the threshold is an input set by the user due to the analog
nature of the application and the signature. The result of the
comparator is then passed to a release logic block (top right-hand
side of Figure 6). The release logic is responsible for saving the
values of the encrypted data and signature of each BCG data set
until the comparator decision is made. By monitoring the
comparator’s output, the release logic takes the decision as to
whether the encrypted BCG data set and the corresponding
signature is to be released or not. Ideally, if the architecture is not
attacked, the two internally generated signatures (Signature 1 and
Signature 2) should match. However, if an HT attack attempts to
corrupt any of the significant bits of the data or signature values,
the comparison logic will declare a mismatch and the data will not
be released.

To verify the correct operation of the comparator logic, a
“comparator testing logic” block, shown in the small dotted box in
Figure 6, is inserted into our architecture. Specifically, the control
unit of the comparator testing logic periodically initiates a test of
an altered signature to verify the correct operation of the
comparator block in case of a failed comparison. To do so, the
comparator testing logic triggers a “test mode” signal to
intentionally modify Signature 2, as shown in Figure 6. It then
monitors the comparator’s result. If the comparator declares a
match, the comparator testing logic catches the discrepancy and
sends an alarm to the release logic block to stop the transmission of
data. A more detailed description of the functionality of the
comparator testing logic is presented later in Section 5.2.1.

It is important to note that in this work our architecture focuses only
on creating means of HT detection by asserting an alarm signal
when an HT is believed to be present. The decisions and
countermeasures to such types of attacks are kept to be processed
and analyzed by higher level policies and protocols.

Figure 6. Digital chip validating the integrity of the data by checking for signature correctness in reconfigurable logic.

18

5. HARDWARE TROJAN ATTACK AND
DETECTION
Figure 7 shows the digital chip architecture with the specific HT
attacks that we discuss and simulate in this work. The attacks we
aim to address are numbered according to their type from 1 to 4.
Attack types 1 and 2 are single attacks, i.e., targetting one point in
the architecture, and attack types 3 and 4 are coordinated attacks,
i.e., targetting multiple points in the architecture.

5.1 Single Attacks
Attack types 1 and 2 target a single point in the architecture as
shown in Figure 7. The goal behind these two types of attack is to
modify the data either as it arrives at the input of the chip or at the
output of any of the internal modules along the data path. Both
types of attack attempt to modify the data in the same way as
presented in our threat scenario described in Section 3 and shown
in Figure 3. Namely, HT trigger circuitry is connected to an
exclusive-or gate such that when the Trojan is triggered, one bit of
the targeted data is complemented resulting in data modification.

5.1.1 Attack Type 1
 Attack type number 1 (Figure 7) is an attack on the input data
immediately after it reaches the chip and before any processing or
signature generation has happened [4]. This type of attack is impor-
tant as its detection depends on the analog signature generation.
Other types of signature-based HT detection techniques do not
cover this type of attack as their Signature 1 generation relies on
the input data [1,5]. In our detection approach however, only
Signature 2 in Figure 7 will be affected. The comparison then with
Signature 1 will result in a mismatch and the release logic will
prevent the data and signature transmission out of the chip.

5.1.2 Attack Type 2
Attack type number 2 targets the intermediate data as it passes
through the different modules in our architecture. Figure 7 shows
an example of this type of attack where the HT tries to modify the
output of the multiplexer, right before the data is fed to the squarer
module. This results in the generation of an altered Signature 2,

which when compared to Signature 1 results in a comparison
mismatch and alarm trigger. Contrary to HT attacks of type 1, HT
attacks of type 2, i.e., inserted to affect the output of the different
modules in an architecture, have been studied earlier in literature.
Different detection techniques including signature based ones were
proven to be effective [1,3-5]. Our architecture not only detects
these types of attacks but also detects attacks that target the input
data as shown in attack type 1.

5.2 Coordinated Attacks
Hardware Trojan attacks of types 3 and 4 attempt to initiate a
coordinated attack targeting simultaneously two points of the
architecture as shown in Figure 7.

5.2.1 Attack Type 3
A detailed view of an HT of attack type 3 is presented in Figure 8.
The HT trigger circuitry is connected to two payloads. The first
payload (Payload 1 in Figure 8) affects the architecture in the same
way as discussed earlier in attack types 1 and 2 as well as in
Figure 3. The second payload (Payload 2 in Figure 8), which is
triggered at the same time, attempts to set the output of the
comparator logic to a fixed value indicating a matched comparison.

In this example of attack type 3 as shown in Figures 7 and 8, once
the trigger is set, this attack simultaneously targets (i) the output of
the encryption cipher by modifying it and (ii) the output of the
comparator logic by forcing the result of the comparison to show a
match even if the signatures at the input of the comparator logic do
not match. Since this tiny HT remains always on once triggered,
the comparator logic will always show a match regardless of input.
The effect of both payloads result in the modification of the data
and its passage undetected. To prevent such a type of attack, the
comparator testing logic block is inserted to frequently test for this
specific case. Periodically, the test mode signal shown in Figure 7
is asserted so that Signature 2 coming out of the 16-bit adder is
intentionally modified. The result of the comparison is then read
by the comparator testing logic. If the result of the comparator
shows a match, the comparator testing logic will detect the attack
and inform the release logic. When the test mode is off, the

Figure 7. The digital chip architecture with the different types of HT attacks discussed in Section 5.

19

signature is passed as is (i.e., unaltered) so that the comparator
testing logic does not affect the functionality of the circuit.

5.2.2 Attack Type 4
Figure 9 shows a detailed view of an HT of attack type 4. The HT
trigger circuitry in this case is also connected to two payloads. The
first payload (Payload 1 in Figure 9) attacks the BCG input data,
and the second payload (Payload 2 in Figure 9) attacks the analog-
based signature (see Figure 7). A coordinated attack on the least
significant bits of the BCG input data and the analog-based
signature (as shown in Figure 9) will result in the modification of
the data and, if the modified values result in |Signature 1 –
Signature 2| ≤ threshold, may result in HT operation going
undetected. It is unclear what ability the attacker would gain by
changing the low order bits as these slight variations in the values
of the inputs and the signature may also occur due to the lack of
precision of the analog sensor.

Another variant of attack type 4 is when the HT attempts to modify
one of the high order bits of both the BCG input data and the
analog-based signature. In this case, the attacker would have to
exploit the vector sum relation between the BCG inputs to
successfully modify both the BCG data and the signature in a way
such that the modifications pass undetected. However, this type of
HT would require additional more complex circuitry (such as
multipliers and adders) and would therefore fall beyond our threat
model of a small sized HT of only a few logic gates as discussed in
Section 3. Such types of attacks – including associated techniques
for detecting HTs with large footprints (e.g., via power-based
techniques in addition to others) – have been well studied in
literature [2]. It is important to note that these prior HT detection
techniques are complementary to our work and can be incorporated
alongside our approach.

6. EXPERIMENTAL RESULTS
The following section reports and discusses the functional
simulations and the synthesis results of our analog-based signature
HT detection architecture. The digital portions of our architecture
were implemented in VHDL code, and our simulations were done
using Mentor Graphics ModelSim SE version 10.2b revision
2013.05 for Linux.

In the following simulations, we assume that the digital signatures
of our design (Signature 1 and Signature 2 in Figure 6) require an
accuracy of at least 3 significant digits after the decimal. Therefore,
we set the comparator threshold 16-bit register to a hexadecimal
value of which in binary is and
equals in our fixed point representation (see Section 2.2).

6.1 Simulation Results and Functional
Verification
Each of the attack types shown in Figure 7 and described in
Section 5 were simulated to verify the functional correctness of our
design and to demonstrate when the architecture is able to catch the
HT attacks.

6.1.1 Simulation of Attack Type 1
To simulate attack type 1, which is at the input of the digital chip,
we inserted an HT logic similar to the one shown in Figure 3
targeting the input data as it arrives on chip. The input BCG Head-
to-Foot data in Figure 7 was modified such that one of the most
significant bits in the 16-bit input was complemented. As
mentioned in Section 3, the HT threat scenario that we consider in
this work is triggered by some internal conditions or states. For our
simulation purposes, the HT trigger waits on an attacker-defined
number of occurrences of a specific input data. When the required
condition is met, the trigger is set and the payload modifies the
input data resulting in the modification of the functional behavior
of the chip.

After the altered input data is passed through the encryption and
decryption ciphers, the resulting output is then fed through a series
of multiplications and additions and finally is compared with the
squared value of the analog-based signature. Since the input data
was altered by the HT, the values of signatures at the input of the
comparator differ by an amount greater than the threshold ()
and so the comparator declared a mismatch at its output. The
release logic, monitoring the comparator’s output, stopped the
transmission of the altered encrypted data and triggered an alarm
signal indicating the presence of the HT. All of this was verified in
VHDL simulation using ModelSim.

6.1.2 Simulation of Attack Type 2
The simulation of attack type 2 was implemented in a similar
fashion as attack type 1. The major difference between this type of
attack and attack type 1 is the place where the HT attacks. In attack
type 2, the HT, once triggered, modifies the value at an output of a
hardware block in the design. In our simulations, we performed
multiple separate tests by inserting HT logic at the output of the
different modules of the architecture.

For example, in one of our simulations, we inserted HT logic at the
output of the multiplexer in the design as shown by the black box

Figure 8. Hardware Trojan comparator attack.

Figure 9. Hardware Trojan attack on data and signature.

20

containing “2” (for attack type “2”) in Figure 7. This resulted in
modifying a reasonably significant bit of the BCG data right before
signature regeneration, leading eventually to an incorrect
Signature 2. Once the regenerated signature (Signature 2) was
compared to the analog-based signature (Signature 1), the
comparator found that the signature difference exceeded the
threshold and thus declared a mismatch so that the release logic
prevented the transmission of the data and asserted the alarm signal.

Also, another simulation of the same attack type, this time at the
output of the encryption cipher, confirmed the need to decrypt the
data and recreate the signature from the regenerated plaintext rather
than directly from the input.

6.1.3 Simulation of Attack Type 3
To simulate attack type 3, the HT logic had to wait for the same
trigger as in the previous attacks. However, the HT now has two
payloads (Figure 8) affecting two different points in the
architecture. Figure 7 shows the points at which we set the HT to
attack. We inserted the first payload (Payload 1 in Figure 8) at the
output of the encryption cipher eventually leading to a modification
in the regenerated signature. Simultaneously, the inserted HT
attacks the comparator output using a second payload (Payload 2 in
Figure 8). This payload forces the output of the comparator to show
a match even when the compared signatures did not match.

It is important to note here that the comparator testing logic is
periodically checking for this specific case. In our simulations, the
periodicity was set to 16 iterations, i.e., the Test Mode in Figures 6
and 7 is set to ‘1’ after 16 sets of data have been processed through
the architecture. The Test Mode is asserted for only one clock cycle
where the system is stalled and the comparator output is checked
for legitimate operation.

Thus, the release logic might transmit altered encrypted data
depending on when the HT is triggered. However, performing the
testing periodically can solve the problem if the sets of data
between two consecutive tests (in our case, 16 sets) can be declared
invalid if attack type 3 is detected (a multi-bit Alarm Signal can
encode different types of alarm conditions, e.g., a specific bit
encoding of the alarm could be used to indicate failure of the
comparator testing logic).

In our simulation, we triggered the HT after the processing of six
iterations of data. After an additional ten iterations and as soon as
the Test Mode was asserted, the comparator testing logic read the
result of the comparison and alerted the release logic to halt the
transmission of the data while signaling the alarm.

6.1.4 Simulation of Attack Type 4
To simulate attack type 4, and as in previous types of attacks, the
HT had to wait for a specific trigger condition. Once the trigger
was asserted, the HT attacked the low order bits of both the BCG
input data and the analog-based signature as shown in Figure 9.
This resulted in a modification of the values of Signature 1 and
Signature 2. However, this time the modifications were minimal
(below the comparator’s threshold). Thus, as expected, the
comparator logic declared a match between the signals and the
release logic released the encrypted bitstream of the modified data
and signature.

6.2 Synthesis Results
Our synthesis results were performed using Synopsys Design
Compiler version J-2014.09 for Linux and were mapped to the
NCSU 45nm Base Kit Library [16].

Table 1 shows the area results of the main modules of our design
post synthesis. It is obvious that a significant amount of area of the
architecture is dedicated to the encryption/decryption modules.
The security modules that are inserted to regenerate and test for the
integrity of the data consume, as expected, significantly lower area.

Table 1. Synthesis Results.

Module Area (square microns)

Encryption Cipher (PRESENT) 5517

Decryption Cipher (PRESENT) 5431

16-bit Multiplier 1293

16-bit Adder 141

Comparator Logic 297

Comparator Testing Logic 108

Release Logic 2414

To better show the area overhead imposed by introducing our HT
detection technique, we present in Table 2 the overall area usage of
the digital chip containing only the processing hardware and
encryption/decryption units and compare it to the overall area of
our modified architecture which includes the HT detection
circuitry. An overhead of about 13% is introduced.

Table 2. Overall Area Consumption and Overhead.

Design Area (square
microns) Overhead (%)

Regular Architecture 13,850 ---

HT Detection Architecture 18,763 13%

HT Detection Architecture
(not considering digital

signature generation part
of the signal processing)

18,763 35%

However, it is to be noted that in our experiments, the digital chip
contained only encryption and decryption blocks. In more realistic
scenarios, such a chip would contain other processing modules
which require larger area. For instance, we assume the digital
signature generation (i.e. calculation of the vector sum) is
considered to be part of the BCG processing hardware. If that is not
the case, the overhead of the detection architecture will be 35% as
shown in Table 2. Our overall conclusion is that the percentage
overheads reported in Table 2 can be considered pessimistic as
increasing the overall chip area would cause a significant decrease
in the overhead of our HT detection approach.

Our current design achieves a maximum clock frequency of
. An analysis of the timing results shows that the

multiplier that is used in the generation of Signature 2 in Figure 6
falls along the critical path of our architecture. We currently
implement the squaring operations in our design using Synopsys
DesignWare’s combinational carry save array multiplier. As
reported by Synopsys [17], this type of implementation has a delay
of . If the application requires a higher clock speed a
designer can choose to map the multiplier’s logic to other
implementations. For example, DesignWare has a Booth-recoded
Wallace-tree multiplier which has a delay of (for a 16-bit
multiplier). In addition, DesignWare provides other options of
pipelined and sequential multipliers. Choosing between these types

21

of implementations allow the designer to make various area versus
delay trade-offs.

7. DISCUSSION
In this paper, we do not discuss ways to foil attacks on the analog
chip. However, the fabrication of the analog chip could be
performed in a “trusted fab” where the chip can then be expected
to be HT free. This option can be considered feasible as the analog
chip can be fabricated using older, less expensive silicon
fabrication technology.

In addition, attacks on the output of the chip are not considered.
Our reasoning is that attacks on the way out of the chip can be
caught by the next stage as the signature will not match the data.

One final comment can be made about the transmission of the
signatures. Figures 6 and 7 show our architecture without explicitly
showing encryption of the signatures. Clearly, sending the sign-
ature unencrypted might open an avenue of attack in later stages
since an attacker may be able to exploit the unencrypted signature
to reveal information about the encrypted data. To prevent these
types of threats, encrypting the signature can be done prior to
transmission. Specifically, in a more complete view of a System-
on-Chip (SoC) including logic for transmission packet formation,
Figures 6 and 7 can be modified as shown in Figure 10 in an SoC
implementation to ensure only a properly encrypted bitstream is
transmitted. Figure 10 shows multiple 16-bit analog-based
signatures input to a FIFO buffer to form a block of 64-bit data that
then can be fed to an encryption cipher, such as PRESENT [15], to
form an encrypted bitstream that is ready for transmission.

8. CONCLUSION
In this work, we present a way of using analog signatures for HT
detection on digital chips. We specifically take advantage of
known relationships between health sensor data to create an analog
signature and then check for its validity in reconfigurable digital
logic. Our architecture targets small-sized HTs which, when
triggered, attempt to modify the functionality of the design.

Our functional simulation results verified the effectiveness of our
architecture in capturing different types of HT attacks including
ones that target the architecture at a single point and others that try
to foil the detection mechanism by attacking in a coordinated
fashion on multiple points in the design.

Our synthesis results show that it is feasible to implement our HT
detection architecture with minimal area overhead.

9. REFERENCES
[1] T. Wu, K. Ganesan, A. Hu, H. Wong, S. Wong, S. Mitra, “TPAD:

Hardware Trojan Prevention and Detection for Trusted Integrated
Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol.PP, no.99, pp.1-17, August
2015.

[2] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware
Trojan Taxonomy and Detection,” IEEE Design & Test of
Computers, vol. 27, no. 1, pp. 10-25, Jan.-Feb. 2010.

[3] T. Wehbe, V. J. Mooney, A. Q. Javaid and O. T. Inan, “A Novel
Physiological Features-Assisted Architecture for Rapidly
Distinguishing Health Problems from Hardware Trojan Attacks
and Errors in Medical Devices,” in IEEE Int’l Symp. on Hardware
Oriented Security and Trust (HOST), Mclean, VA, USA, 2017,
pp. 106-109.

[4] T. Wehbe, V. J. Mooney, D. C. Keezer and N. Parham, “A Novel
Approach to Detect Hardware Trojan Attacks on Primary Data
Inputs,” in Proc. of the Workshop on Embedded Systems Security
(WESS), October 2015.

[5] A. Gbade-Alabi, D. Keezer, V. Mooney, A. Poshmann, M.
Stöttinger and K. Divekar, “A Signature Based Architecture for
Trojan Detection,” in Proc. of the Workshop on Embedded
Systems Security (WESS), October 2014.

[6] J. Francq and F. Frick, “Introduction to hardware trojan detection
methods,” Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 770-775, 2015.

[7] S. Moein, J. Subramnian, T. A. Gulliver, F. Gebali and M. W. El-
Kharashi, “Classification of hardware trojan detection
techniques,” 10th International Conference on Computer
Engineering & Systems (ICCES), pp. 357-362, 2015.

[8] O. T. Inan, P.-F. Migeotte, K.-S. Park, M. Etemadi, K.
Tavakolian, R. Casanella, et al., “Ballistocardiography and
Seismocardiography: A Review of Recent Advances,” IEEE
Journal of Biomedical and Health Informatics, 2014.

[9] G. K. Prisk, S. Verhaeghe, D. Padeken, H. Hamacher, and M.
Paiva, “Three-Dimensional Ballistocardiography and Respiratory
Motion in Sustained Microgravity,” Aviat Space Environ Med,
vol. 72, pp. 1067-1074, 2001.

[10] I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies
on the estimation of cardiac output in man, and of abnormalities
in cardiac function, from the heart's recoil and the blood's impacts;
the ballistocardiogram,” American Journal of Physiology, vol.
127, pp. 1-28, 1939.

[11] B. Curtis, “Delivering security by design in the Internet of
Things,” IEEE Int'l Test Conference (ITC), pp. 1-1, 2014.

[12] A. Q. Javaid, N. F. Fesmire, M. A. Weitnauer, and O. T. Inan,
“Towards robust estimation of systolic time intervals using head-
to-foot and dorso-ventral components of sternal acceleration
signals,” IEEE 12th Int’l Conf on Wearable and Implantable Body
Sensor Networks (BSN), pp. 1-5, 2015.

[13] H. Ashouri and O. T. Inan, “Improving the Accuracy of Proximal
Timing Detection from Ballistocardiogram Signals using a High
Bandwidth Force Plate,” IEEE Biomedical and Health
Informatics Conference, 2016.

[14] R. F. Coughlin and R. S. Villanucci, Introductory Operational
Amplifiers and Linear ICs: Theory and Experimentation. Harlow,
United Kingdom: Pearson Education Limited, 1990.

[15] A. Boganov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An
Ultra-Lightweight Block Cipher,” Proceedings of the 9th
International Workshop on Cryptographic Hardware and
Embedded Systems, LNCS, Springer-Verlag, September 2007.

[16] NCSU 45nm FreePDKTM Process Design Kit. Electronic Design
Automation, North Carolina State University. Available at:
http://www.eda.ncsu.edu/wiki/FreePDK

[17] A. H Syed, “Performance of Different Multipliers in the
DesignWare Building Block IP,” DesignWare Technical Bulletin
Article, Synopsys Inc. Available at: https://www.synopsys.com/
dw/dwtb.php?a=multiplier_bldg_block [Accessed on: April 8,
2016.

Figure 10. Encrypting the analog-based signature prior to
transmission.

22

Synthesis of VLIW Accelerators from Formal Descriptions in a
Real-Time Multi-Core Environment

Johnny Öberg

 Dept. of Electronics, KTH Royal Institute of Technology
Sweden

johnnyob@kth.se

ABSTRACT
Designing, programming and design space exploration of

predictable Real-Time systems on Heterogeneous Multi-Core
platforms is a very complex task. The increasing validation costs
and time-to-market pressure creates a desire to build systems that
are correct by construction.

Formal description based on Model of Computations (MoCs)
is a convenient way to create high-level models of such systems.
The MoCs provide abstraction and high level modeling through a
clear set of rules based on mathematics, which can be used as input
for system synthesis. A formal synthesis flow would then ensure
that the resulting real-time system is both predictable and correct
by construction, provided that all transformations used in the flow
can be verified/trusted.

In this paper we show how a Real-Time computation node in
an MPSoC system, described using the Synchronous MoC, can be
transformed into a VLIW accelerator. The created accelerator is
incorporated as a computation node in a heterogeneous multi-core
system implemented on an FPGA.

1. INTRODUCTION

As we approach the Sea-of-Cores/Processors era [1], System-level
design (SLD) is considered the next frontier in electronic design
automation (EDA) [2]. To successfully navigate this sea, new
design methods for instantiating, configuring, programming, and
validating these systems, together with automatic methods for
exploring the design space, is needed. In SLD, resources are
defined in terms of abstract functions (system behavior) and blocks
(system architecture). Design targets include both software (SW)
and hardware (HW), which in many cases is generated
automatically to guarantee correct functionality, with design
properties close to optimal performance and resource utilization.

Using a formal description based on Model of Computations
(MoCs) is one way to achieve correctness by design. A MoC
provide abstraction and a clear definition of the systems behavior,
in the sense that the MoC describe the semantics of computation
and concurrency of the processes in the system, i.e., how the

computations communicate, e.g. they are used to model the
abstraction of time explicitly [3]. The synchronous MoC is of
particular interest, since it allows for description of systems
reacting periodically within strict time bounds, which can be used
to describe real-time oriented applications.

ForSyDe (short for Formal System Design) is a language
defined for system modelling [4][5][6]. It is based on the functional
programming paradigm, and allows the designer to model a system
as a set of communicating concurrent processes. It is a Multi-core
ignorant ESL based on SystemC. With each function, a process
constructor is associated, that determines its Model of
Computation. When the design is ready, one of several
backends/platforms is selected for implementation. Currently, they
support GPGPUs, the CompSoC platform from TU Eindhoven, the
NoC-System Generator from KTH, and direct synthesis to VHDL.

In this work, we have selected the NoC-System Generator
(NSG) tool from KTH for generating the target platform. The NSG
tool is a fast-prototyping tool that allows a designer to quickly
explore the design space and get a working MPSoC implementation
running on soft-cores on an FPGA in very short time. It has a GUI
that allows a designer to directly specify the functionality in C,
either by dropping C-code in the right section of a process
constructor, or by importing C-code generated by third-party tools
like Simulink [7][8][9][10].

However, when implementing Real-time systems on FPGAs,
we often run in to the situation that the combined Worst Case
Execution Time (WCET) of the tasks/processes running on the soft
CPUs are too slow compared to the real-time constraints. If no more
soft processors can be added to the system due to size/power
constraints, it is necessary to move the computations to an
accelerator. In the ForSyDe methodology/philosophy, this should
be implemented as a correct-by-construction transformation, which
provides seamless integration of the produced accelerator into the
existing system.

In this paper, we show how a computation node in an MPSoC
can be transformed into a Very Large Instruction Word (VLIW)
accelerator using a variant of standard High-Level-Synthesis
(HLS). The starting point is a Synchronous model of an industrial
relevant example, modelled using ForSyDe design principles, and
then implemented as a transformation compatible with the
ForSyDe/NoC-System Generator backend tool. After
transformation, the VLIW accelerator is stored as an IP Block, and
put back into the NSG design flow, where it replaces the original
node. We also show that the resulting system fulfills the real-time
constraints.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA World’17, September 19-21, 2017, Stockholm and Copenhagen.
Copyright © 2017 ACM 978-1-4503-5154-6

23

2. HLS vs VLIW generation

Most methods for designing accelerators start at the processor level.
They typically analyze the given C-code and try to identify proper
functions that are suited for acceleration. The identified functions
are then synthesized and the control of them is stored back into the
assembly code using unused codes in the instruction set or using
predefined custom instructions. An example of the former is the
Molen co-processor [11], targeted for Xilinx, while the latter is
used in the Altera NIOS processor [12]. The main advantage of
these approaches is the tight integration of the accelerated function
with the processor. The major problem with them is that
transferring parameters and results to and from the functions take
considerable processing time. Also, interrupts on the main
processor requires special handling while an accelerated function is
executed.

Other approaches, like [13] start with an implementation of a
VLIW, analyze the C-code, and then try to optimize the
implementation of it by removing unused wires and registers. The
advantage with this approach is that it becomes more similar to
HLS, while the disadvantage is that they still require more bits to
store the entire instruction space of the VLIW. The No Instruction
Set Computer (NISC) processor approach [14][15][16], takes this
method one step further in the direction of HLS by deriving the
microcode directly, by using the control bits of any given data path
as the instruction words, and then compiles the C-code for the
intended data path.

Our approach is similar to the NISC-approach in the sense that
we also let the operators residing in the data path decide the
instruction set, with the difference that we have chosen to encode
the control bits for each operator into an instruction to get a unified
instruction width, which simplifies VHDL code generation.

Another difference with our approach is the view of the
Register File (RF). In the NISC-approach, the number of registers
in the RF is restricted. We do not have this restriction. Rather, the
size of the register file is adjusted to the number of required
registers to implement the functionality. This is not optimal from
an area point of view, but it lets us maximize the throughput of the
accelerated algorithms, since temporary variable storage in an
external memory is no longer needed.

Removing the RF restriction also removes the final difference
between NISC-architectures and High-Level Synthesis. In our
opinion, there is no fundamental difference between compiling a C-
program towards a VLIW NISC with unrestricted number of
registers and implementing it using HLS.

Consider the data paths shown in Figure 1 below. In the HLS
case, each operation in the data path is supplied with two operands,
either from the registers in the design, from an input port or it is set
to some constant. The result is stored back to a register or forwarded
to an output port. Thus, the set of all registers can then be viewed
as a (multi-ported) register file, where the enable bits of the
registers correspond to the addressing bits of the registers in a
register file used in a VLIW. In the same way, we can view the
operations in the data path as the operations in the execution
pipelines of the VLIW. An operation not used in a control stage of
the HLS is equivalent to a NOP-instruction in the VLIW case. As
the number of implemented instructions grows, and more and more
registers are used in the RF, the HLS data path becomes more and
more similar to a VLIW data path. Thus

lim

→

Figure 1. Typical HLS Datapath vs a typical VLIW Datapath

3. ForSyDe/NSG Synchronous MoC Semantics

In the ForSyDe Methodology, a system is described as a set of
concurrent communicating processes. Each process has a process
constructor associated with it, where the type of constructor
decides its Model of Computation, i.e., the execution semantics of
the computational part of the process and how it communicates data
over a communication channel. Each process constructor has an Init
function and a Main function. The Init function specifies what
should happen when booting the system, while the Main function
specifies what should happen during normal operation. The
functions are not allowed to have side effects, i.e., no global
variables are allowed.

Simulink [17] is a system-level language favored by industry to
describe real-time control systems. Caspi et al [18] identified the
periodic execution semantic of a subset of Simulink blocks, by
transforming the Simulink model into an intermediate layer,
described in the language Lustre [19], which executes functions
periodically triggered by a synchronous signal.

Although automated mapping and refining of system level
models onto MPSoCs has been shown to be very difficult to
achieve[20], Robino et al showed in [10] how Simulink system
models can be imported to the ForSyDe/NSG-tool, and then
manually mapped to a MPSoC implementation. They extracted the
C-code produced by the Embedded Encoder, and dropped it into a
Synchronous MoC (SMoC) process constructor. The
implementation of the SMoC itself was done using their Heartbeat
methodology [9], which suggests using a globally distributed
signal/clock together with a bare-metal SW layer to provide the
synchronization to processes run on the MPSoC’s CPUs.

 Their method is similar to the Time Triggered Architecture
(TTA) model [21], which enables events to happen periodically
during specific time slots. However, the TTA model requires an OS
to support the synchronization between Processing Elements (PEs)
of the target MPSoC, thus requiring large memories, in contrast to
the low memory overhead imposed by the bare-metal OS of the
NSG-tool.

 The semantics of the Synchronous MoC implementation in the
Heartbeat Methodology is similar to how Synchronous HW is
functioning. The Worst Case Execution Time (WCET) of the
processes correspond to the Critical Path in the combinational part
of a circuit, while the communication channels correspond to
registers placed between the combinational parts. The Worst Case
Communication Time (WCCT) on the communication channels
corresponds to the setup time of the registers plus the propagation
delay on the wires. The reset signal to the registers corresponds to
an initial value function that the processes execute while the
processor is booting, see Figure 2, below.

CTRL

ADD

 MUL

A
D
D

RF

 INSTR
M
U
L

24

4. VLIW accelerator generation

4.1 The Calc2HW transform

When a designer uses the NSG-tool to generate an MPSoC
system for an FPGA platform, the tool generates the corresponding
image of the system in a form understandable by the target FPGA
technology (mhs-files for Xilinx, sopc/qsys-files for Altera), sets
up the appropriate SW-structure so that it can be compiled, and
instantiates any IP-blocks used in the system, including the NoC
structure implementing the communication system. After logic
synthesis, the FPGA can be configured with the system. The
resulting system is easy to debug due to the well-defined semantics

of the process constructors, letting the designer focus on how to get
the functionality right. The ForSyDe/NSG design flow for creating
the system is shown in Figure 3.

In the case that the Real-Time constraints of executing the
processes on the CPUs on the platform cannot be met, an
accelerator of the culprit process(es) needs to be created. This can
either be done using 1) third-party tools, 2) existing HLS tools
available in the target FPGA technology, or 3) inserted by hand.

We have defined a transformation that allows to transform
synchronous ForSyDe/NSG C-processes, that contain pure
calculations, into a NISC-style VLIW accelerator using a variant of
standard High-Level Synthesis. To allow seamless integration with
the rest of the system, we use the streaming Direct Access Port
(DAP) provided by the NoC’s Resource Network Interface (RNI),
and replace/accelerate everything residing in the target node. The
generated VLIW is stored as an IP Block, and then put back into
the NoC, replacing the original node, before performing logic
synthesis. The synthesis process is outlined in Figure 4.

4.2 VLIW Synthesis Process

After running the ForSyDe/NSG-tool, all SW process files end
up in a sub-directory of the target directory. Besides the C-code for
the processes, it also contains a software_configuration.h file that
is generated by the NSG-tool. It contains information about how
the communication channels are mapped on the RNI of the NoC.
This information is parsed together with the rest of the C-code, and
a Directed-Acyclic-Graph (DAG) is built of each Init and Main
function in the process file. All assignments must be pure
expressions, where the result is stored in a double precision floating
point variable. Hierarchical function calls, for-loops and integer
arithmetic are not currently supported in the current
implementation. Port accesses are translated into STORE-
instructions that directly access the RNI memory through the DAP
and communication primitives are translated into SEND-
instructions. If-statements are translated to CMP-instructions that
set the Sign and/or Zero flag. All instructions have a conditional
field that tells whether or not it should be executed conditionally
based on these flags.

After the DAGs of the functions have been built, the Init
functions are scheduled first, and then the SEND-instructions are
scheduled to ensure that they end up last. The last used memory
position used for the Init functions is stored to remember the start

F(x) Communication
Channel

Init function Main Function

SMOC

F(x)

Figure 2. SW Process execution semantics for a Synchronous Model
of Computation (SMOC) in the Heartbeat Methodology, modelled
as a HW circuit equivalent.

For each process

Parse C-code

Build DAG

Parse all include files

For each init function Schedule DAG

Schedule SEND

For each main function Schedule DAG

Schedule SEND

Assign Registers

Generate VHDL

Figure 4. VLIW Synthesis process

Legacy (C) Code

Third Party
Tools

Create HW System (GUI/edit XML)
Place & Edit/Import SW processes onto HW nodes
Generate FPGA Image
Debug
Measure WCET on target platform
Improve design until design constraints are met.

a) Redistribute SW processes to other nodes to even
out total WCET on each processor.

b) Create VLIW accelerator from SW processes at
a node and replace node contents with it.

c) Regenerate FPGA Image

Figure 3. ForSyDe/NSG Design Flow

25

address of the Main code. The procedure is then repeated for all
Main functions.

Instructions are scheduled using an ASAP-methodology,
described later in section 4.4, with a preference to lower execution
pipe numbers. An instruction can never be scheduled earlier than
the time slot where it is written to a register, nor before the start of
the function type it belongs to (Init/Main). In case of scheduling
conflicts (result is not available yet, conditional boundary, etc),
NOPs are inserted, and the instruction scheduled at a later time step.
A new instruction can replace an earlier inserted NOP. Due to its
large size, only a single division unit is allowed. ADD/MULs are
relatively small, so each Execution pipeline is allowed to have one
each.

After all functions have been scheduled, registers are assigned.
A new register is allocated whenever needed, and de-allocated
when it is not used anymore, making sure that the number of used
registers never exceeds the number of maximum alive variables.
Global variables that should remember their value from each
execution round are kept alive across the iterations. The register
allocation algorithm is described in detail in section 4.5.

The resulting schedule is used to configure and generate the
VLIW. The instruction schedule is checked to determine the
number of unique instructions. For each used instruction type, an
instruction code is assigned. Thus, the VLIW will never use more
instruction codes than necessary, making it a NISC style VLIW.

4.3 Target VLIW Architecture

The target VLIW architecture is shown in Figure 5 above. It
contains as many execution pipelines as needed, either because of
timing constraints or because of user constraints. The generated
accelerator contains an FSM that handles the communication with
the RNI of the NoC. The RNI has a Direct Access Port (DAP) that
allows streaming applications to read and write data quickly. Only
one memory access can be done per VLIW word.

Whenever a Heartbeat of the system happens, the RNI sends an
interrupt signal to the VLIW. The first time this happens after
system reset, the Init function is executed. For all IRQs after this,
the Main function is executed.

The VLIW execution pipelines consist of 15 execution stages,
of which 10 are execution stages used by the floating point
operators. The LM0 initiates a Port read if required. The LM1 stores
the result of the read in a FIFO. The FOP1 stage forwards the
addresses to the RF files and the constant ROMs. Constants are
always positive when stored and accessible from all pipeline stages
simultaneously; i.e., they are synthesized to one logic circuit per
execution pipeline.

In the FOP2 stage, the accessed values are routed to their
respective destination. The functions are executed in the EXECn
stages. The number of stages is determined by the minimum
number of pipeline stages that is required to run the ADD, MUL
and DIV floating point units at the available system clock. At
present, the Calc2HW transformation only functions for Altera
platforms. The minimum number of execution stages their floating
point IPs has in common is ten.

During WB, the results are stored back, either to a port
(memory access) or to a register. Two reads and one write is
allowed to any RF at any one time (multiple accesses to the same
register are allowed). Each execution pipeline has one register file
(RF) associated to it. To save one crossbar, the execution pipelines
writes only to its own RF.

Results written to output ports are stored in an output queue.
The FSM handling the DAP-port prioritizes read accesses since the
execution pipeline cannot be stalled; values to output ports are
written whenever an empty slot is available.

4.4 Scheduling Algorithm

The ScheduleDAG algorithm, shown in Figure 6, takes the
instructions in the order they were compiled and assigns them to an
execution pipeline. The insertion place is the earliest place that it
can be scheduled. The pipe_nr is determined by the

EXEC0

0 N-1

SW

RNI
VLIW

DAP

DAP
FSM

Output
Queue

LM0
LM1

0 N-1

IRQ

INSTR
ROM

PC IRQ

DAP

FOP1

FOP2 RF RF 0 N-1

MUL/
ADD

F
IF

O

MUL/
ADD EXEC1

EXEC9

RF RF WB

DIV

INIT MAIN

C
on

st
an

ts

Register address crossbar

Register operands crossbar

…

Figure 5. Target VLIW architecture.

ScheduleDAG()::
 for(i=0;i<nr_of_ instructions_in_dag;i++) {
 if (Instr(i)!=SEND) {
 earliest_condition_start=base_earliest_start;
 if (Instr(i)->ConditionalInstruction()) {
 earliest_condition_start=FindConditionInDAG(Instr(i));
 };
 earliest_start_op1=VariableLastWrite(Instr(i)->Op1());
 if (earliest_start_op1==-1) {// No dependencies
 earliest_start_op1=base_earliest_start;
 } else {
 earliest_start_op1+=WriteBackLatency;
 }
 … // repeat for op2
 earliest_start=min(earliest_start_op1,earliest_start_op2);
 earliest_start=max(earliest_start,earliest_condition_start+1);
 earliest_start=max(earliest_start,process_earliest_start);
 new_earliest_start=CheckConflicts(Instr(i),
 earliest_start,nr_of_pipes);
 if ((pipe_nr<0) && (earliest_start==new_earliest_start))
 new_earliest_start++; // This line is full
 while(earliest_start!=new_earliest_start) {
 earliest_start=new_earliest_start;
 new_earliest_start=CheckConflicts(Instr(i),
 earliest_start,nr_of_pipes);
 if ((pipe_nr<0) && (earliest_start==new_earliest_start))
 new_earliest_start++; // This line is full
 };
 PadPipeWithNopsUntil(pipe_nr,earliest_start);
 AddInstructionToPipe(Instr(i),pipe_nr,earliest_start);
 }
 }

Figure 6. Pseudo code of the ScheduleDAG Algorithm

26

CheckConflicts() algorithm, which checks the current VLIW
instruction line to see if it is allowed to schedule the instruction to
a pipe on that line. If there is a conflict, the algorithm returns the
next potential line (i.e., earliest_start+1) that the instruction can be
assigned to. The assignment rules that are checked against are:

1. Max two different reads from the same RegFile.
2. Max one Port read per VLIW line, unless they refer to

the same port address.
3. Max one Port write per VLIW line.
4. If target variable value is “global”, i.e., its value should

be kept across iterations, the instruction must be
scheduled in the same pipe that already holds the
variable.

5. The target pipe must contain a NOP instruction, i.e., no
instruction should have been scheduled to this pipe_nr.

6. In case there are several choices, assign it to the place
which has the lowest pipe_nr.

4.5 The AssignRegisters()Algorithm

The AssignRegisters() algorithm, shown in Figure 7, goes
through all instructions in the schedule. If the instruction is reading
a variable for the last time, the register associated with that variable
is deallocated. In case a variable is used for the first time, a new
register is allocated for it. Variables that should keep their values
across iterations do not have a stop cycle. Registers are allocated
the first time they are written to, and are then never deallocated.

5. EXPERIMENTS

The starting point of the experiments is a Synchronous model
of an industrial relevant example, a Motor Controller (MC),
modelled in the ForSyDe/NSG using ForSyDe design principles,
and then implemented as an 2x2 NoC-based MPSoC on an Altera
FPGA DE2-115 board. The equations for the MC are derived from
the descriptions of the MC algorithm found in [22]. The block
diagram of it is shown in Figure 8 a) below. The algorithm contains
one access to a sin(x) and one cos(x)-function from the math.h
library. These two functions were trapped in the C-parser and
implemented as a MacLaurin-expansion using a series of
ADD/MUL-operations for simplicity. The argument x was
truncated to be within 2 during calculation. The example is
compiled into 185 instructions, with little parallelism inside. Thus,
it is expected that any schedule of it will contain a lot of NOPs.

The SW view and the HW views of the base setup for the
experiments in the next section is shown in Figure 8 b-d). The target
node that will be replaced with an accelerator is the one in the upper
right corner. As a reference to trace down bugs, the MC was cloned
and run as pure SW in the lower left node. Both processes send the
result to the lower right node, where the results were compared. For
the design space explorations below, the MC process was cloned N
additional times, and the clones put in the upper right corner of the
system before the Calc2HW transformation was applied.

5.1 Design Space Exploration

In the first experiment we do a small design space exploration
to figure out many MC algorithms that can be simultaneously
implemented on one accelerator node without exceeding the real-
time constraint of the algorithm, i.e., 3125 clock cycles (ccs). The
Figure 9 below shows how the WCET (in ccs) varies with the
number of MCs and the number of execution pipelines. We can see
that there is no problem at all to meet the WCET deadline on the
VLIW, even if we let the VLIW run 20 MC algorithms
simultaneously, by adding a second execution pipeline.

In the next experiment, we try to figure out how the size of the
system’s various parts will vary with the number of MCs, providing
that we still only use a single execution pipeline. The results are
shown in Figure 10. The total system size grows linearly with the
number of MCs, as expected. The units are in kLUTs, kDFFs, and
kMemoryBits for the MC’s values and kLUTs for the Total System
Area. As we can see, the number of memory bits used in the MC is
a step function, as expected. As soon as the number of registers
passes a power of two, another bit is added to the Register File
Memory address, which makes the number of memory bits used
jump up one notch.

In the final experiment, we do a design space to see how the
area of the VLIW varies with the number of implemented MCs and
the number of chosen execution pipelines in the VLIW. The
smallest one is of course the single MC, with a single execution
pipeline (x1). It is ~14.4 kLUTs. A double precision ADDSUB unit
is ~1990 LUTs, a double precision MUL unit is ~1160 LUTs, while
a DIV unit is ~7500 LUTs. The rest of the area is attributed to the
Instruction ROM (synthesized into logic), and RF control. The
largest one that we synthesized that still meet the timing constraint
of 3125 ccs, is the MC20x2 with ~45 kLUTs.

AssignRegisters()::{
 for(i=0;i<nr_of_pipes;i++) {
 nr_of_registers[i]=0;
 used_nr_of_registers[i]=0;
 }
 for(i=0;i<nr_of_instructions;i++) {
 for(j=0;j<nr_of_pipes;j++) {
 if (Instr(i,j)!=NOP) {

nr=VariableNr(Instr(i,j)->Op1());¨
if (Variable(Nr)->StopCycle()==i) {
 (reg_nr,pipe_nr)=ObtainVariableAssignment(nr);
 if (!(reg_nr,pipe_nr) already released on this line)) {
 // Release register
 reg_hash_table[pipe_nr][reg_nr]=-1;
 nr_of_registers[pipe_nr]--;
 }
}
…// redo above for Op2 before checking target
nr=VariableNr(Instr(i,j)->Target());
if (Variable(Nr)->StartCycle()==i) {
 // Allocate new register
 nr_of_registers[j]++;
 used_nr_of_registers[j]=max(nr_of_registers[j],
 used_nr_of_registers[j]) ;
 for(k=0;k<nr_of_registers[j];k++) {

 if (register_hash_table[j][k]==-1) {
 register_hash_table[j][k]=nr;
 Variable(nr)->RegNr(k); reg_nr=k;
 Variable(nr)->PipeNr(j); pipe_nr=j;
 k=nr_of_registers[j];
 }; // if
 }; // for
 Instr(i,j)->RegNr(reg_nr);
 Instr(i,j)->PipeNr(pipe_nr);
}; // if

 }; // if
 }; // for
 }; // for
 for(i=0;i<nr_of_pipes;i++) {
 total_nr_of_registers+=used_nr_of_registers[i];
 };
};

Figure 7. Pseudo code of the AssignRegisters() algorithm

27

5.2 Discussion

The MC algorithm has a hard real-time requirement, it has to
be run at 16 kHz, which means it has to compute its value within
62.5 us (=3125 ccs). To achieve a predictable system, the flit
insertion rate of the RNI was reduced to ensure that all flits will
have time to reach its destination without conflicts. This resulted in
a NoC bandwidth (BW) of 100 Mbit/s, the same as an external
Ethernet connection. The MC sends four double precision values
plus two 32-bit setup words, i.e., 320 bits per message. This means
that the Best Case Communication Time (BCCT) is 3.2 us. In
theory, this means that we can implement 19 MCs before exceeding
the NoC BW. However, we also have to take into account when the
first SEND command will be issued to the pipeline. This effectively
restricts the implementation to 15 MCs.

However, it should be noted here that a 2x2 NoC, with the SW
placed as shown in Figure 8 b), will never experience any
collisions. Thus, it will always be predictable, which means that we
could without harm double the injection rate to the NoC. The NoC
BW would then increase to 200 Mbit/s, and 30 MCs can be
implemented per node. Now, we can also insert another accelerator
in another node if there is enough space on the FPGA, then making
it possible to run 60 MCs on the FPGA. However, since the board
we have only have one Ethernet connection with 100 Mbit/s in and
out of the FPGA, we cannot feed the VLIW with enough data to
compute so many MCs, Thus, the main bottleneck of the
implementation is how to get data in and out of the FPGA.

Also, it should be noted here that the WCET of the SW
implementation of the MC running on the comparison node is ~500
us, ie., it is too slow to run at the required speed at a NIOS II/e.
Comparisons with the SW node was done at 1 Hz, so that the
alt_printf statements to the terminal in the receiving end would
have sufficient time to complete its execution.

6. CONCLUSION & FUTURE WORK

In this paper, we have presented how processes implemented
using the synchronous Model of Computation, running on a
computation node on a NoC-based MPSoC System on an FPGA,
generated by the ForSyDe/NSG-tool, can be transformed into a
NISC-style VLIW accelerator. The transformation applied is a
variant of standard High-Level-Synthesis (HLS), and the generated
VLIW IP is used to replace the original Nios II/e computation node
in the design. Since it is a done as a refinement transformation, the
implemented accelerator will be correct by construction, once the
transformation has been formally verified and properly integrated
into the NSG-tool’s design flow.

We have applied the transformation to an industrial relevant
example, and performed a design exploration of the properties of
the design if implemented on an Altera DE2-115 FPGA board. The
resulting real-time system is guaranteed to be predictable since the
NoC can be set up in a way that the traffic patterns on the NoC
never collide, and there is only local SW running on the CPUs in
the other nodes.

6.1 Future Work

In the current version of our transformation, only double-
precision floating point computations are considered. In the future,
we will adapt our C-parser and VLIW generator to be able to handle
a more elaborate set of types, like pixel structs, integer and fixed
point data types. Further, we will also investigate what happens if
we apply the transformation to smaller examples with large
memory requirements, such as FIR filters and FFTs, so that we may
compare the results with what other tools can produce.

What most current HLS approaches have in common is that
they all target integer/fixed-point implementations of DSP
algorithms, with the primary objective to save area and get it to run
a bit faster. However, from an industrial point of view, this

Figure 8. a) Block diagram of the MC algorithm [22] b) SW view of experimental setup. c) HW view before Calc2HW transformation.
d) HW view after Calc2HW transformation.

28

approach is slightly problematic. The whole idea with HLS from
the beginning was to allow SW engineers to design HW
accelerators. Converting double-precision Simulink-functions and
algorithms written in Matlab to their fixed-point dittos is not a
simple task. On the contrary, it requires quite some skills to get a
numerical stable solution. In addition, recent studies have shown
that for some applications, the fixed-point solution actually requires
more energy for computing the same function than the same
floating point version [23]. Thus, the study should also take design
time and power consumption into account, to see which style of
data types is more effective.

7. REFERENCES

[1] Davidson, S.; “Sailing on a sea of processors," Design & Test of
Computers, IEEE , vol.16, pp.112, Oct-Dec 1999.

[2] The International Technology Roadmap for Semiconductors (ITRS),
System Drivers, 2011, http://www.itrs.net.

[3] Edward A. Lee and Alberto Sangiovanni-Vincentelli, “Comparing
models of computation”. In Proceedings of the 1996 IEEE/ACM
international conference on Computer-aided design, ICCAD ’96,
pages 234–241, Washington, DC, USA, 1996. IEEE Computer
Society.

[4] S. H. Attarzadeh Niaki, M. Jakobsen, T. Sulonen, and I. Sander.
Formal heterogeneous system modeling with SystemC. In Forum on
Specification and Design Languages (FDL 2012), pages 160-167,
Vienna, Austria, 2012

[5] S. H. Attarzadeh Niaki and I. Sander. An automated parallel
simulation flow for heterogeneous embedded systems. In Proceedings
of Design Automation and Test in Europe (DATE '13), pages 27-30,
Grenoble, France, March 2013.

[6] https://forsyde.ict.kth.se/
[7] J. Öberg, F. Robino, “A NoC System Generator for the Sea-of-Cores

Era”. In proc. of FPGA World 2011. ACM Digital Libraries.
[8] https://forsyde.ict.kth.se/noc_generator
[9] F. Robino and J. Öberg. “The HeartBeat model: a platform abstraction

enabling fast prototyping of real-time applications on NoC-based
MPSoC on FPGA”. In Proc. of ReCoSoC, 2013.

[10] F. Robino, J. Öberg, “From Simulink to NoC-based MPSoC on
FPGA”, In Proc. of DATE 2014.

[11] Vassiliadis, S.; Wong, S.; Gaydadjiev, G.; Bertels, K.; Kuzmanov, G.;
Panainte, E.M.; “The MOLEN polymorphic processor”, In
Transactions on Computers, vol 53; issue 11, 2004.

[12] Nios II Custom Instruction User Guide, http://www.altera.com
[13] Matai, J. ; Oberg, J. ; Irturk, A. ; Taemin Kim ; Kastner, R.; ”

Trimmed VLIW: Moving application specific processors towards
high level synthesis”, In Proc. of Electronic System Level Synthesis
Conference (ESLsyn), 2012, Page(s): 11 – 16.

[14] Bita Gorjiara, Daniel Gajski, “Custom Processor Design Using NISC:
A Case-Study on DCT algorithm”, In Proc. of the 3rd Workshop on
Embedded Systems for Real-Time Multimedia, 2005, Sept. 2005,
pp.55-60.

[15] Jelena Trajkovic, Samar Abdi, Gabriela Nicolescu, and Daniel D.
Gajski, “Automated Generation of Custom Processor Core from C
Code”, In Journal of Electrical and Computer Engineering, Volume
2012 (2012), Article ID 862469, 26 pages, Hindawi Publishing
Corporation.

[16] NISC Technology & Toolset, http://www.ics.uci.edu/~nisc/
[17] Mathworks. Simulink documentation center. Website.

http://www.mathworks.se/help/simulink/.
[18] P. Caspi et al. “From Simulink to Scade/Lustre to TTA: a layered

approach for distributed embedded applications”. In Proc. of conf. on
Language, compiler, and tool for embedded systems, LCTES, 2003.

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language Lustre. Proc. of the IEEE, 1991.

[20] A. Sangiovanni-Vincentelli. “Quo vadis SLD: Reasoning about trends
and challenges of system-level design”. IEEE, 95(3):467–506, 2007.

[21] H. Kopetz and G. Bauer. “The time-triggered architecture”.
Proceedings of the IEEE, 91(1):112 – 126, Jan 2003.

[22] AN908 - Using the dsPIC30F for Vector Control of an ACIM,
Microchip.

[23] D. Guenther, A. Bytyn, R. Leupers, G. Ascheid, “Energy-efficieny of
floating-point and fixed-point SIMD cores for MIMO processing
systems”, In Proc. of SoC Symposium, 2014.

0

1000

2000

3000

4000

x1 x2 x3 x4

Treq

MC1

MC2

MC4

MC8

MC12

MC16

MC20

Figure 9. WCET (ccs) vs nr of execution pipelines in the VLIW

0

10

20

30

40

50

M
C
1

M
C
3

M
C
5

M
C
7

M
C
9

M
C
1
1

M
C
1
3

M
C
1
5

MC LUTs

MC Reg

MC Mem

System

0

20

40

60

M
C
1

M
C
2

M
C
4

M
C
8

M
C
1
2

M
C
1
6

M
C
2
0

x1

x2

x3

x4

Area [kLUTs]

Figure 10. Total System Size vs # of MC calculations

Figure 11. Total Area vs # Execution Pipelines in VLIW

29

Room: Gasellen
Sessions C1-C2-C3
Session Chair: N/A

 § Mastering Clock Domain Crossing challenges in FPGA Design

Metastabilty from the intermixing of multiple clock signals is not modeled by simulation.
Unless you leverage exhaustive, automated Clock Domain Crossing (CDC) analyses to
identify and correct problem areas, you will inevitably suffer unpredictable behavior when
you go to the lab or when the FPGA is used in the field. Automated CDC verification
solutions are mandatory for multiclock designs. Questa CDC Solutions identify errors that
have to do with clock domain crossings signals that are generated in one clock domain and
consumed in another.

Presenter: Stefan Bauer, InnoFour, Netherlands.

 § Input power related challenges

In modern embedded systems, reliability and uptime is also related to what happens on the
incoming power wires. There may be power interruption or surges, bringing down the
system and possibly also causing permanent damage. The seminar covers what may
happen to your system and how to protect it and maintain safe operation.

Presenter: Thomas Ginell, Linear Technology, now part of Analog Devices.

§ Xilinx Cost-Optimized Portfolio Spartan-7, Zynq Z-7000S

Presenter: Per Boström, Avnet Silica.

30

Room: Renen
Sessions A5-A6-C4

Session Chair: Lennart Lindh
FPGAworld

 § Interface and visualization for accelerometer in VHDL [15 min]

During a course in the vocational education TEIS (applied electronics in embedded
systems), I designed a system on an FPGA in VHDL on the platform BeMicro MAX 10. The
system logs an accelerometer's measured values and communicates via SPI. This logging is
displayed on a VGA screen. The construction contains a small custom made processor that
runs the entire system and manages the SPI bus, VGA drawing, and the peripheral devices.

Presenter: Anders Axelsson, Sweden.

 § Study on usage of free IP for serial communication in the context of
Cyclone-V SoC HPS/FPGA and Linux [15 min]

The study is about how to use free IP for serial communication like SPI, I2C and UART
implemented in the FPGA part of a CycloneV SoC together with software running under a
Linux yocto system in the HPS.

To perform this study two different CycloneV SoC Developments boards were connected
using three serial communication interfaces, SPI, I2C and UART. The test application
transfers data in real time autonomously between the two boards while sampling input data
to be transmitted from slide switches and presenting received data onto LEDs.

Presenter: Magnus Karlsson, Innowicom System Solutions AB / AGSTU, Sweden.

 § Intel High Level Synthesis

Increasing abstraction level when designing with FPGA may give significant productivity
gains in both design and verification phase of a project. Join this session to learn more
about Intel's HLS compiler due to release with Quartus 17.1 later this year. We will explain
the fundamentals and give a little demo.

Presenter: Nikolay Rognlien, Arrow.

31

Room: Räven
Sessions C5-C6

Session Chair: Hichem Belhadj
Microsemi Corp., USA

 § Context-Aware Logic Replication for Higher Speed and Lower Power

Several designs with timing hurdles include large number high fanout nets that cause high
delay penalties and routing congestion. This paper proposes a novel approach to tackle the
logic replication and brings relief to the timing not only to the high fanout net, but also
considers the logic context to ensure optimal logic replication.

Presenter: Microsemi Corp., USA.

 § Security-Conscious FPGA Design:
 The Rule and Not the Exception Anymore!

This paper intends to bring awareness of the MUST nature of considering security as the
primary FPGA design goal by architects, design leads, engineers, and procurement/supply
management teams. More importantly, Corporate Executives that care about their business
and its reputation can no longer blame security breaches on their design engineers, or their
IT team, it is their responsibility to mandate “all-out security schemes” to be implemented,
to hire security experts, and to plan education programs for their organization . The bulk of
the paper provides solutions and recommendations to help implement “comprehensive
security-aware”-design.

Presenter: Microsemi Corp., USA.

32

Room: Gasellen
Sessions A7-A8

Session Chair: N/A

 § Common RTOS-related bugs - How avoid and detect

This presentation will feature a commercial product that we sell (Tracealyzer) but this it is
not a pure product presentation. Instead, we use screenshots from Tracealyzer to explain
relevant RTOS concepts.

A longer presentation can be seen at
https://percepio.com/2016/12/14/common-rtos-related-bugs-how-avoid-and-detect/

Presenter: Johan Kraft, Percepio AB, Sweden.

 § FPGA in Neuroscience

In neuroimaging, the computational demand on the image processing pipelines is
increasing as new methodological methods are improved. One computationally demanding
method is to look at global brain connectivity in fMRI (functional MRI), where the brain
activity of each voxel in the 3D brain volume is correlated over time with every other voxel
to obtain a global measure of connectivity. Here, we look at how OpenCL on Intel Arria 10
FPGA can be used for parallel processing of fMRI data.

More information: One commonly used tool for global brain connectivity is 3dTcorrMap that
comes with the software package AFNI. This tool is available in an OpenMP version to
utilise multi-core processors. We have written our own custom made tool for global brain
connectivity written in C and OpenCL for the Arria 10 FPGA and then compared the
performance with the OpenMP version of 3dTcorrMap running across 4 CPU cores.

Presenter: Lars Forsberg, Synective AB, Sweden.

33

FPGAworld 2017 @ Copenhagen

Technical University of Denmark
SCION, Building 372, Diplomvej Lyngby

Denmark

Conference Programme

08:30 Registration

09:00 Conference opening
 Lars Dittmann, Technical University of Denmark
 and Lennart Lindh, FPGAworld

09:15 Key Note Session
 Acceleration of Convolutional Neural Networks in FPGAs
 Hans Holten-Lund, Prevas AB, Denmark

10:00 Coffee Break & Exhibition

10:30 Parallel Sessions

12:00 Lunch Break & Exhibition

13:00 Mike Dini Talk
 FPGA events during the year that has gone and gossips

13:30 Parallel Sessions

14:30 Coffee Break & Exhibition

15:00 Parallel Sessions

16:00 Panel Discussion
 What for skills & knowledge do a FPGA designers need today?

 Moderator: Rolf Sylvester-Hvid, Aktuel Elektronik (Danish Magazine)

The exhibition will be open during the day.
Coffee will be served in the exhibition area.

34

Room: N/A
Key Note Session @ Copenhagen

Speaker: Hans Holten-Lund
Prevas AB, Denmark

 § Acceleration of Convolutional Neural Networks in FPGAs
Hans Holten-Lund, Prevas AB, Denmark

The keynote presentation will discuss some of the issues we face as FPGA designers when
tasked with the computational loads involved in signal processing. New tools are appearing,
aiming at making it easier to design signal processing blocks. Convolutional Neural
Networks share many techniques with more traditional signal processing. Explore tradeoffs,
design-time vs performance. Floating-point vs fixed-point math. GPUs vs FPGAs.

Hans Holten-Lund, is a Senior FPGA Designer at Prevas, and has a Ph.D. and M.Sc. EE
from IMM, Technical University of Denmark. He has worked mainly on FPGA design for
phased array ultrasound scanners, and and other embedded FPGA based systems,
including computer vision. Also has industry experience with multi-gigabit networks and 3D
computer graphics.

A longer CV is available here: https://www.linkedin.com/in/hans-holten-lund-a3a53114/

35

Room: N/A
Sessions C1-C2-C3

Session Chair: Lennart Lindh
FPGAworld

 § Mastering Clock Domain Crossing challenges in FPGA Design

Metastabilty from the intermixing of multiple clock signals is not modeled by simulation.
Unless you leverage exhaustive, automated Clock Domain Crossing (CDC) analyses to
identify and correct problem areas, you will inevitably suffer unpredictable behavior when
you go to the lab or when the FPGA is used in the field. Automated CDC verification
solutions are mandatory for multiclock designs. Questa CDC Solutions identify errors that
have to do with clock domain crossings signals that are generated in one clock domain and
consumed in another.

Presenter: Stefan Bauer, InnoFour, Netherlands.

 § The FPGA security challenge: high assurance on low cost devices

Traditionally, in secure chip enrollment a unique private key is generated and burned into
one-time programmable memory and so relies on expensive continuous protection of an
entity’s private key. This presentation is challenging traditional cryptography by introducing
a truly private keyless technology – a solution to the ubiquitous problem of managing and
protecting private keys.

Presenter: Thomas Ginell, Linear Technology, now part of Analog Devices.

 § Intel High Level Synthesis

Increasing abstraction level when designing with FPGA may give significant productivity
gains in both design and verification phase of a project. Join this session to learn more
about Intel's HLS compiler due to release with Quartus 17.1 later this year. We will explain
the fundamentals and give a little demo.

Presenter: Nikolay Rognlien, Arrow.

36

Room: N/A
Sessions A1-A2

Session Chair: Lennart Lindh
FPGAworld

 § Constrained Random and Functional Coverage for VHDL testbenches
controlled in a structured manner

OSVVM provides a good library for CR and FC. But how should we apply this in a TB to
avoid the normal verification traps?

- Bad overview
- Bad readability
- Bad maintainability & extensibility
- Inefficient reuse

Even most well-structured TBs do not sufficiently avoid these problems.

This presentation will show how easy it is to combine OSVVM and UVVM to get a ‘Unified
VHDL Verification Methodology’ that provides advanced CR and FC, - and at the same time
promotes overview, readability, maintainability, extensibility and reuse.

Presenter: Espen Tallaksen, Norway.

 § Portable Stimulus Specification
 The Next Big Wave in Functional Verification

In this paper we will describe the upcoming proposed standard for "Portable Stimulus
Specification" (PSS) from Accellera. We will show how a single model of stimulus and
scenarios can be re-used across different environments such as High-level C models, UVM
simulations or even embedded SW, thus providing the verification engineers with a unified
way to model interaction with complex SoC's or FPGA's containing CPU cores and
embedded SW.

More information: Accellera has been working on the new proposed PSS standard since
2014. At DAC 2017 the Working group released the first "Early Adopter" version of the
standard. This new proposed standard has received tremendous amounts of interest from
the industry - at DAC and DVCon the seminars about PSS were completely overbooked and
only standing room was available.

For more information please see http://accellera.org/news/press-releases/244-accellera-
portablestimulus-early-adopter-specification-now-available-for-public-review

Presenter: Staffan Berg, Sweden.

37

Room: N/A
Sessions C4-A3

Session Chairs: Lennart Lindh
FPGAworld

 § Use of FPGA in high speed networking

Silicom Ltd. is an industry leading provider of high performance networking and data
infrastructure solutions. At Silicom we are determined to help our customers boost their
performance using the latest FPGA technology from both Xilinx and Altera.

Our products offerings include Cyber Security, Network Monitoring and Analytics, Traffic
Management, Application Delivery, WAN Optimization, High Frequency Trading,
virtualization, cloud computing and big data markets.

Presenter: Michael da Costa Carneiro, Silicom Ltd., Denmark.

 § The Impact of Place and Route on FPGA Logic Synthesis

For a quarter century, synthesizing an RTL design into an FPGA circuit has required only a
loose understanding of the impact of Place and Route (P&R) software. By estimating route
delays during Logic Synthesis based on graph properties and with accurate timing
constraints, it was possible to achieve timing closure even for high-frequency clocks. In this
presentation, we explain useful techniques to improve system performance and to achieve
success in P&R more reliably.

Presenter: Pieter J. Hazewindus, USA.

38

Call for FPGAworld Conference 2018

Academic/Industrial Papers, Product Presentations, Exhibits and Tutorials
September 18th, 2018, Stockholm, Sweden, Academic & Industrial programs

September 20th, 2018, Copenhagen, Denmark, Industrial program only

Submissions should be at least in one of these areas

• DESIGN METHODS - MODELS AND PRACTICES
o Project methodology
o Design methods as Hardware/software co-design
o Modeling of different abstraction
o IP component designs
o Interface design: supporting modularity
o Integration - models and practices
o Verification and validation
o Board layout and verification
o Etc.

• TOOLS
o News
o Design, modeling, implementation, verification and validation
o Instrumentation, monitoring, testing, debugging, etc.
o Synthesis, compilers and languages
o Etc.

• HW/SW IP COMPONENTS
o New IP components for platforms and applications
o Real-time operating systems, file systems, internet communications
o Etc.

• PLATFORM ARCHITECTURES
o Single/multiprocessor architecture
o Memory architectures.
o Reconfigurable Architectures
o HW/SW architecture
o Low power architectures
o Etc.

• APPLICATIONS
o Case studies from users in industry, academic and students
o HW/SW component presentation
o Prototyping
o Etc.

• SURVEYS, TRENDS AND EDUCATION
o History and surveys of reconfigurable logic
o Tutorials
o Student work and projects
o Etc.

www.fpgaworld.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

