

www.bitvis.no

UVVM Utility Library and
UVVM VVC Framework
 Free and Open source
 Improves TB efficiency, overview,
 maintainability and Reuse

Independent Design Centre for SW & FPGA/ASIC
 - 16 designers (Embedded SW: 6, FPGA: 10)
 - Specification, Design, Implementation, Verification, Test
 - Methodology partner
 - Sparring and review partner

Register Wizard
 Freeware
 Fast and safe generation of registers:
 VHDL Bus IF, C, Doc, TB

Accelerating FPGA and Digital ASIC Design:
 Oct 12-13, Stockholm
 Nov 2-3, Munich

Accelerating FPGA VHDL Verification:
 Dec 6-8, Munich

FPGA and Digital ASIC Design
- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Quality Assurance - at the right level

FPGA VHDL Verification
- TBs & Verification essentials
- Structured TB from scratch
- BFM, TLM, VIP, VVC
- Assertions, randomisation,
 functional coverage
- Structure, Overview, Reuse

www.bitvis.no

Verifying corner cases in a
structured manner

- using VHDL Verification Components

The leading independent design centre

for FPGA & Embedded Software in Norway
www.bitvis.no

FPGAworld 2016

www.bitvis.no

 Value related

• Data, control, addresses,

 Inter value related

• Two or more values

 Single-end Cycle related

• Cycles between events

 Multi-end Cycle related

• Any comb. of inputs and states

• Multi-cycle issues

 Value and cycle related

Corner Case categories

Verifying Corner Cases in FPGAs 3

A corner case is not a
problem in itself.

It is only a problem when

the design doesn't work for
this case.

AND this is detected late in
the FPGA development

OR even worse - not
detected until delivered

www.bitvis.no

Chip level functional scenario

Verifying Corner Cases in FPGAs 4

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

Sequential testing

 Find some bugs?

 Then behaves fine

 Value related corners?

Parallel operation

 Multi-end
 cycle related corners

 Bugs are hard to find

www.bitvis.no

How do designers handle
Cycle related corner cases

Test Controller

Typical testbench approaches

Verifying Corner Cases in FPGAs 5

Clock

Generator

Testcase

Sequencer
Adding threads CCL

Ad hoc
"structure"

Lab
?

?

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

- Fixed structure

- Overview???
- Reuse???
- Bad synchronisation

Testcase

Sequencer

???

Good architecture,
overview, reuse & sync.

www.bitvis.no

In addition to normal and advanced stimuli and checking -

Wouldn't it be nice if we could ...

 handle any number of interfaces in a structured manner?

 reuse major TB elements between module TBs?

 reuse major module TB elements in the FPGA TB?

 read the test sequencer almost as simple pseudo code?

 recognise the verification spec. in the test sequencer?

 understand the sequence of event
- just from looking at the test sequencer

 Is this feasible at all?

Wishful thinking for a testbench?

Verifying Corner Cases in FPGAs 6

www.bitvis.no

BFMs to handle interfaces

Verifying Corner Cases in FPGAs 7

 Handle transactions at a higher level

 E.g. Read, Write, Send packet, Config, etc

 More understandable for anyone

 Simpler code & Improved overview

 Uniform style, method, sequence, result

 Easy to add several very useful features

Example: BFM procedure for a CPU access to a module's register

E.g. write 0xF0 into a register at address 0x22

Replaced by:

write(x”22”, x”F0”);

cs <= ’1’;

we <= ’1’;

addr <= x”22”;

data <= x”F0”;

wait until rising_edge(clk);

wait until falling_edge(clk);

cs <= ’0’;

we <= ’0’;

or:

sbi_write(x”22”, x”F0”);

BFM: A model or model set (or API)
 for handling transactions on a physical interface.

 Models the environment - e.g. a bus master

SBI: Simple Bus Interface
 - Single cycle
 - (Optional ready)
 - Dead simple

www.bitvis.no

 BFM procedures only allow sequential operation (in test sequencer)

 Parallelism requires BFMs in separate processes or entities

 Processes may only have one single thread of execution

• Fine for simple applications or really deep insight & understanding

 Entities (= Components) allow Multiple active threads

• Simple handling of independent command and response

• May add dedicated processes for extended functionality

• Enables encapsulation

• Makes re-use far more efficient

 Using Components is the best solution - exactly as for Design

 'VHDL Verification Components' : VVC

Parallelism & Encapsulation

Verifying Corner Cases in FPGAs 8

www.bitvis.no

VVC – In its simplest form

DUT
(UART VC)

“Ext.” I/O
Other

Ports

Clocks

Bus

interface

Clock

Generation

Testcase

Sequencer

SBI_

VVC

Going from BFM to VVC

Using Bus access (SBI) as example
- E.g. write to a register in DUT

Sequencer command using BFM:

sbi_write(C_ADDR_TX, x"2A");

Minimum VVC 1. Interpret command from sequencer in zero time

 2. Execute respective BFM towards DUT

Sequencer command using VVC: sbi_write(SBI_VVCT, C_ADDR_TX, x"2A");

 Results in above BFM being executed from VVC towards DUT

Very simple VVC – already allows simultaneous execution of BFMs on different interfaces

Verifying Corner Cases in FPGAs 9

www.bitvis.no

TB implementation & understanding
- Three main areas

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface

TX UART_RX_VVC

Verifying Corner Cases in FPGAs 10

 1: The Testbench with the Test Harness

 2: The Verification Components

 3: The Central Test Sequencer

www.bitvis.no

1:The UVVM testbench/harness

Verifying Corner Cases in FPGAs 11

 UVVM is LEGO-like
Testbench

Test harness

 Build test harness

• Instantiate DUT and VVCs

• Connect VVCs to DUT

 Build TB with test sequencer

• Instantiate test harness

• Include VVC methods pkg
Connections included

• No additional connections

• May have VVCs anywhere

DUT

VVC

VVC

VVC

Test
seq.

www.bitvis.no

SBI_VVC

(1:Testbench : Easy to implement & understand by anyone)

 Now - what about these VVCs?

2: VVC: VHDL Verification Component

Verifying Corner Cases in FPGAs 12

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

 TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Same main architecture in every VVC

• >90% same code in Interpreters

• Same command queue

• 90% same code in Executors - apart from BFM calls

VVC Generation

UART BFM to UART_VVC:

less than 30 min

www.bitvis.no

SBI_VVC

(1:Testbench : Easy to implement & understand by anyone)

 Now - what about these VVCs?

2: VVC: VHDL Verification Component

Verifying Corner Cases in FPGAs 13

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
 Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
 & Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Command Queue

Response-Executor

www.bitvis.no

(Based on very structured TB and VVCs)

 The sequencer is the most important part of the Testbench

 Most man-hours will be (or should be) spent here

 MUST be easy to understand, modify, maintain,

3: The test sequencer

Verifying Corner Cases in FPGAs 14

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART (DUT)

RX
Other

Ports

Clocks

Bus

interface

TX UART_RX_VVC

UART_RX_VVC

Baudrate
Checker

www.bitvis.no

1. A standard serial sequencer:
 - First Apply data to UART RX,
 - then Wait for RX interrupt,
 - then Read reg RX_DATA.

Verification plan - In plain English (1)

Verifying Corner Cases in FPGAs 15

Pure sequential - Using UVVM Sequential BFMs only

uart_transmit(x"A1", "First byte on UART RX");

await_value(rx_empty, '0', 0, 12*bit_period, ERROR, message);

sbi_check(C_ADDR_RX_DATA, x"A1", "UART RX first byte");

Pure sequential - using UVVM VVC Framework + VVCs

uart_transmit(UART_VVCT,1, x"A1", "First byte on UART RX");

await_value(rx_empty, '0', 0, 12*bit_period, ERROR, message);

sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, x"A1", "UART RX first byte");

-- await_completion(SBI_VVCT,1, "Finish");

For each verification
plan issue in English,
show UVVM code in
test sequencer

www.bitvis.no

2. Apply data to UART RX and read reg RX_DATA at the same time

Verification plan - In plain English (2)

Verifying Corner Cases in FPGAs 16

Parallel operation - using UVVM VVC Framework + VVCs

uart_transmit(UART_VVCT,1, x"A1", "First byte on UART RX");

sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, x"A1", "UART RX first byte");

www.bitvis.no

3. Read reg RX_DATA when this has just been up-loaded

Verification plan - In plain English (3)

Verifying Corner Cases in FPGAs 17

Parallel operation - using UVVM VVC Framework + VVCs

uart_transmit(UART_VVCT,1, x"A1", "First byte on UART RX");

insert_delay(SBI_VVCT,1, C_FRAME_TIME + 2 * C_CLK_PERIOD);

sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, x"A1", "UART RX first byte");

N

www.bitvis.no

4. Extend the range in 3. to include all possible cycle corner cases

1.

Similarly for Write on reg TX_DATA wrt. transmitting on TX

Similarly to check TX vs RX independence

Verification plan - In plain English (4)

Verifying Corner Cases in FPGAs 18

Parallel operation - using UVVM VVC Framework + VVCs

for i in -C_CYCLES_BEFORE to C_CYCLES_AFTER loop

 v_data := std_logic_vector(to_unsigned(100+i, 8));

 uart_transmit(UART_VVCT,1, v_data, "First byte on UART RX");

 insert_delay(SBI_VVCT,1, C_FRAME_TIME + i * C_CLK_PERIOD);
 sbi_check(SBI_VVCT,1, C_ADDR_RX_DATA, v_data, message);

 await_completion(UART_VVCT,1, "Finish before next transmit");

end loop;

Make your own super-procedure

uart_transmit_sbi_check(

 C_START_VALUE, -C_CYCLES_BEFORE, C_CYCLES_AFTER);

Even better: Make the VVCs handle the sequences

sbi_write(SBI_VVCT,1, C_ADDR_TX_DATA, RANDOM_TO_BUFFER, 1, 256);

uart_expect(UART_VVCT, 1, RX, FROM_BUFFER, 1, 256);

www.bitvis.no

 Direct testing

 Constrained random

• Use std VHDL, Utility Library or OSVVM to generate values

• Apply from test sequencer as follows:

 1. As time divided single accesses - as shown earlier

 2. As a chunk of single accesses distributed simultaneously

 3. As a single command to initiate multiple accesses from VVC

 Coverage

• OSVVM is currently the best system for coverage

• Control from test sequencer as follows:

Value related corner cases

Verifying Corner Cases in FPGAs 19

uart_transmit(UART_VVCT,1,TX, FROM_BUF, C_BUFFER_1, 256, msg);

uart_transmit(UART_VVCT,1,TX, RANDOM, C_BUFFER_2, 256, msg);

uart_transmit(UART_VVCT,1,TX, RANDOM, C_BUFFER_1, DATA_COVERAGE, msg);

• Constrained Random & Coverage are just add-ons

• Work fine with Utility Library and VVC Framework

• Ext. Randomisation and Coverage packages may be used as is

• UVVM version of OSVVM will enhance Coverage functionality

Make your own super-procedure (re-cap)

uart_transmit_sbi_check(

 C_START_VALUE, -C_CYCLES_BEFORE, C_CYCLES_AFTER);

www.bitvis.no

 Important for both the DUT, TB and VVCs

 UVVM built-in messaging simplifies TB/VVC debugging

Debugging (1) - Verbosity ctrl

Verifying Corner Cases in FPGAs 20

Showing only the distribution of commands from the test sequencer to the VVCs

2045 TB seq.(uvvm) ->uart_transmit(UART_VVC,1,TX, x"AA"): . [15]

2045 TB seq.(uvvm) ->await_completion(UART_VVC,1,TX, 2080 ns): . [16]

4005 TB seq.(uvvm) ->sbi_check(SBI_VVC,1, C_A_RX, x"AA"): RX_DATA. [17]

4005 TB seq.(uvvm) ->await_completion(SBI_VVC,1, 2080 ns): . [18]

Removed some columns to fit into slide:

(Prefix, Time decimals and unit, ID and lots of space)

Excellent progress report for debugging DUT

Showing only the completed commands (executed BFMs)

3805 UART_VVC,1,TX uart transmit(x"AA") completed. [15]

4017 SBI_VVC,1 sbi_check(C_A_RX, x"AA")=> OK, read data = x"AA". RX_DATA [17]

Time stamp

Scope

Message

Showing distribution and execution - together

2045 TB seq.(uvvm) ->uart_transmit(UART_VVC,1,TX, x"AA"): . [15]

2045 TB seq.(uvvm) ->await_completion(UART_VVC,1,TX, 2080 ns): . [16]

3805 UART_VVC,1,TX uart transmit(x"AA") completed. [15]

4005 TB seq.(uvvm) ->sbi_check(SBI_VVC,1, C_A_RX, x"AA"): RX_DATA. [17]

4005 TB seq.(uvvm) ->await_completion(SBI_VVC,1, 2080 ns): . [18]

4017 SBI_VVC,1 sbi_check(C_A_RX, x"AA")=> OK, read data = x"AA". RX_DATA [17]

www.bitvis.no

Showing all log messages, but for uart_transmit() only

2045 TB seq.(uvvm) ->uart_transmit(UART_VVC,1,TX, x"AA"): . [15]

2045 UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA"). Command received [15

2045 TB seq.(uvvm) ACK received [15]

2045 UART_VVC,1,TX uart_transmit(UART_VVC,1,TX, x"AA") - Will be executed [15]

3805 UART_VVC,1,TX uart transmit(x"AA") completed. [15]

3805 UART_VVC,1,TX ..Executor: Waiting for command

3805 UART_VVC,1,TX ..Interpreter: Waiting for command

Verifying Corner Cases in FPGAs 21

Debugging (2) - Follow command

Debugging the Testbench or VVC
(Only showing uart_transmit)

Normal view: Showing executed commands only

3805 UART_VVC,1,TX uart transmit(x"AA") completed. [15]

4017 SBI_VVC,1 sbi_check(C_A_RX, x"AA")=> OK, read data = x"AA" RX_DATA [17]

www.bitvis.no

Wouldn't it be nice if we could ...

 handle any number of interfaces in a structured manner?

 reuse major TB elements between module TBs?

 reuse major module TB elements in the FPGA TB?

 read the test sequencer almost as simple pseudo code?

 recognise the verification spec. in the test sequencer?

 understand the sequence of event

- just from looking at the test sequencer

Wishful thinking? - Revisited

Verifying Corner Cases in FPGAs 22

UVVM

www.bitvis.no

 You may use UVVM for all or parts of your TB

 You may use one or more UVVM compatible VVCs

• and combine with any other approach

 You may use just a BFM - without the corresponding VVC

• and combine with any other approach

 You may combine with OSVVM for all or parts of your TB

• Using all or parts of OSVVM

 UVVM gives you a very well structured methodology

• You can choose which parts you want to use

 UVVM is also the 'Unified VHDL Verification Methodology'

Levels of Freedom with UVVM

Verifying Corner Cases in FPGAs 23

www.bitvis.no

UVVM is gaining momentum

Verifying Corner Cases in FPGAs 24

 UVVM VVC Framework - Released February 2016

 Great feedback on LinkedIn FPGA/ASIC/VHDL groups

 Really good feedback from users (industrial and academia)

 Presented at various conferences:
- FPGA-Forum in Trondheim, February
- FPGA-Kongress in München, July

- FPGAworld in Stockholm, September
- NMI in Swindon, October
- DVCon-Europe in Munich, October
- Aldec Webinar, October/November

Next course

- Dec 6-8, Munich: Accelerating FPGA VHDL Verification
(In Cooperation with Trias Mikroelektronik Gmbh. A Mentor Graphics distributor)

www.bitvis.no

 UVVM is Free & Open Source
- the only openly available solution for a good TB architecture

 UVVM is setting a Standard

 Several free (open source) VVCs available - and more to come
(AXI4-Lite, AXI4-Stream, Avalon MM, UART, I2C, SPI, SBI, GPIO)

 UVVM structure yields major benefits

• Overview, Readability, Maintainability, Extendibility

• Reuse at all levels

Summary

Verifying Corner Cases in FPGAs 25

UVVM Yields better quality - or reduces risk

UVVM Significantly reduces verification time

www.bitvis.no

 Digital design for FPGAs and ASICs has a huge improvement potential with
respect to development time and product quality.
 A lot of time is wasted on inefficient design and lack of awareness and
knowledge of the most critical digital design issues. This also seriously affects the
quality of the end product. The really good thing is that this huge improvement
potential can be realised just by making a few important changes to the way we
design.

 The most important design related issues to improve are:

• Design Architecture & Structure

• Clock Domain Crossing

• Coding and General Digital Design

• Reuse and Design for Reuse

• Timing Closure

• Quality Assurance - at the right level

 These issues are the main subjects of this course
See www.bitvis.no under 'Events' for more info
(or see one course example here: http://bitvis.no/events/accel-fpgaasic-design,-berlin-2016/)

Accelerating FPGA and Digital ASIC Design

Verifying Corner Cases in FPGAs 26

This slide was Added
after presentation

http://www.bitvis.no/

www.bitvis.no

 On average half the development time for an FPGA is spent on verification.
It is possible to significantly reduce this time, and major reductions can be
accomplished with just minor adjustments. It is all about Overview, Readability,
Maintainability and Reuse at all levels – and you achieve all of this with the right
methodology and a good structured architecture.

 Agenda
• Making a simple VHDL test bench step-by-step
• Using procedures and making good BFMs
• Applying logs, alerts, value and stability checkers, awaits, etc...
• Making an advanced VHDL test bench step-by-step
• Assertions, randomisation, constrained random, coverage, debuggers, monitors
• Verification components and testbench architecture for advanced Verification
• Verification reuse and preparations for reuse
• Making testbenches as simple as possible – adapting to the DUT complexity
• Structuring, Debugging, Overview, Maintainability, Extendibility
• Examples and labs using UVVM

 These issues are the main subjects of this course
See www.bitvis.no under 'Events' for more info
(or see one course example here: http://bitvis.no/events/accel-fpga-verifi,-berlin-2016/)

Accelerating FPGA VHDL verification

Verifying Corner Cases in FPGAs 27

This slide was Added
after presentation

http://www.bitvis.no/

www.bitvis.no

Register Wizard

 Free tool for automatic generation of

• Full VHDL register interface (SBI)

• VHDL testbench for register interface

• C header file

• Documentation (Register overview tables)

 All from a single register description source file (JSON)

 Download and info under www.bitvis.no

Additional free tool from Bitvis

Verifying Corner Cases in FPGAs 28

This slide was Added
after presentation

www.bitvis.no

Your partner for Embedded software and FPGA

Quality in every bit

Thank you

Verifying corner cases in a
structured manner

- using VHDL Verification Components

