
110001011010011110100111011011010011110011

www.bitvis.no Your partner for SW and FPGA

The critically missing
VHDL testbench feature

- Finally a structured approach

FPGAworld
Sept. 8, 2015

110001011010011110100111011011010011110011

About Bitvis

 Independent Design Centre for SW & FPGA/ASIC

 14 designers (Embedded SW: 5, FPGA: 9) (April 2015)

 Specification, Design, Implementation, Verification, Test

 Methodology partner

 Sparring and review partner

 Verification IP provider

 2-3 day course:

'Accelerating FPGA Development'

The critically missing VHDL testbench feature 2

The leading independent design centre in our field in Norway

110001011010011110100111011011010011110011

 This presentation has a lot of animation.

If you would like to watch the original PowerPoint
presentation, just send us an email requesting this.

Send the email to info@bitvis.no

and include your name (mandatory)

and your company (optional)

The critically missing VHDL testbench feature

Added after the presentation at FPGAworld

mailto:info@bitvis.no

110001011010011110100111011011010011110011

Missing:

 A good Testbench Architecture and Structure

• For Protocol and Control oriented Design in particular

Consequences:

 Inefficient testbench development, extensions, modifications

 Difficult to reuse TB parts in a project - or to share the TB itself

 High risk of missing critical corner cases

Improvement Potential using a well structured approach:

 Major time saving (many MWs for medium complexity FPGA)

 Significant quality improvement for end product

 A new world for overview, maintainability, extendibility and reuse

What is missing?
- And What is the improvement potential?

The critically missing VHDL testbench feature 4

110001011010011110100111011011010011110011

Parallell operation

FPGA functional scenario

PIF

SPI

P3

ETH ETH

P1

P2

uart

FPGA

DMA

Intr
ctrl

Sequential testing

 Find some bugs?

 Then behaves fine

Parallell operation
 Corner case bugs




The critically missing VHDL testbench feature 5

The critically missing VHDL testbench feature 6

TB

Corner case example

Data
provider
FSM 1

Data
receiver
FSM 2

Data

Valid

Ack

When data available:
Set Data & Valid

Wait for Valid

Sample Data & Set Ack

Reset Ack

Wait for Ack

Reset Valid

FSM 1: Data source changes
 Jumps to relevant state

Select data source

In this particular case: Bug in FSM 1

May only be detected if a and b in the same cycle:

a. Selection of data source - e.g. via register interface
b. Acknowledge from Data Receiver

 Typical corner case:

 Two events may happen at the same time
 - But it is unlikely that they actually do so in your TB
 - Most probably your lab test will not detect it
 - Real life: Guess what???

Will show typical protocol interface bug in tutorial @13:30

110001011010011110100111011011010011110011

 Typical testbench
 Sequential

Typical testbench

PIF

SPI

P3

ETH ETH

P1

P2

uart

FPGA

DMA

Intr
ctrl

Clock

Gen

Testcase

Sequencer

Sequential testing
 No bug found

Parallel operation
 Corner case bugs

Adding
threads

CCL

Ad hoc
"structure"

Cycle related corner cases?

Lab
?

?

Structured, but far too complex

Structured
with good overview

The critically missing VHDL testbench feature 7

110001011010011110100111011011010011110011

Example: A regular data stream

• E.g. a filter or simple algorithm

• Simultaneous access on two interfaces

• Contiguous data input & contiguous data output

Simple problem  ad-hoc solution

The critically missing VHDL testbench feature 8

110001011010011110100111011011010011110011

Regular Data Stream - Example

DUT
(e.g. Filter)

p_apply_data p_fetch_data

p_main (test-sequencer)

BFM BFM
B
F
M

enable_p_apply_data enable_p_fetch_data

Input
stimuli

Exp.
Output

Model

in out BFM BFM

Single thread.
Can only handle one interface at any time Dead simple example !!!

Scoreboard

The critically missing VHDL testbench feature 9

110001011010011110100111011011010011110011

 Still a VERY simple module!

 BUT

• May have lots of corner cases

• often never simulated at all

• often never tested in the lab

 So

• Need to control RX, TX and PIF independently

• Must be tightly controlled from a sequencer

• Must allow full flexibility in data, access times, etc

The UART

DUT

(UART)

“Ext.” I/O

RX + TX

Other

Ports

Clocks

Bus

interface

FIFO
rx/tx

Will show typical protocol interface bug in tutorial @13:30

The critically missing VHDL testbench feature 10

110001011010011110100111011011010011110011

Wishful thinking for a testbench?

Wouldn't it be nice if we could ...

 handle any number of interfaces in a structured manner?

 reuse major TB elements between module TBs?

 reuse major module TB elements in the FPGA TB?

 read the test sequencer almost as simple pseudo code?

 recognise the verification spec. in the test sequencer?

 understand the sequence of event
- just from looking at the test sequencer

 Is this feasible at all?

The critically missing VHDL testbench feature 11

110001011010011110100111011011010011110011

The critically missing VHDL testbench feature 12

Scenario: Check data out of UART (DUT) TX

DUT (UART)

p_transmit

p_receive

p_main (test-sequencer)

BFM BFM

B
F
M

RX TX

trigger_p_receive
p_receive_data

TO_on_ack

ack

busy

TO_on_receive
severity_TO

severity_data_error

Oooops...
 Stumbling into problems as we develop our tests....

As for the Regular Data Stream:

 Need separate threads for Sequencer and interfaces to TX & RX Need to control severity of receiving wrong data
 Need to send that to p_receive for checking data received
Occasionally p_receive doesn't detect the trigger "pulse"
 Need acknowledge from p_receive to sequencer
Can't wait forever for the acknowledge
 Need timeout, with error handling and reporting
Sequencer must sometimes wait until p_receive is free
 Need busy-indication from p_receive (or 'completed')
Receiving data may take forever - e.g. if bug in TB or DUT
 Need time out for data reception
 (May need severity for time out for data reception)

- Need to set number of data words

- Need to see the actual data received in the sequencer

- Need to set baudrate

- Need to set margins for baudrate, and severity

- etc, etc

num_data_words

data_received
baudrate

baudrate_margin
baudrate_severity

Problem is growing for every detected need

110001011010011110100111011011010011110011

 More and more control signals must be entered

 New issues detected during test case development

 Old code lines must be updated

After "finishing" the control and data reception of UART TX



 Same issues for control and data to UART RX

 Same issues for other modules

 Same issues at top level

Problem keeps growing...

For every new interface and feature
"old" code may have to be updated

The critically missing VHDL testbench feature 13

110001011010011110100111011011010011110011

The critically missing VHDL testbench feature 14

Let's Solve the problem

DUT (UART)

p_transmit

p_receive

p_main (test-sequencer)

BFM BFM

B
F
M

RX TX

Problem specification

- Signals being added, removed or modified

- Protocol being modified or extended

- Knowledge of valid signals and protocols

- Cumbersome to write this code over and over again

 Basically all the same problems resulting in BFMs

transmit(x"C1") receive(x"2A")

BFMs:

 Valid minimum set of values and signals

 Valid and hidden protocol

 Hidden complexity

 Increased readability and compact

 Allows painless modifications of signals, protocol, features

T
L
M

T
L
M

receive_uart(x"2A")

receive(UART, x"2A")

receive(UART,
x"2A", WARNING,

1 ms, FAILURE)
pif_read(C_ADDR_RX, x"C1)

pif_write(C_ADDR_TX, x"2A")

Need BFM-like solution

- Procedural

- Signals between Sequencer and p_receive / p_transmit

- No physical signals, but used to control transactions

 Transaction level models/commands

Handles the problem on the sequencer side.
What about the executor side?

forward(UART, receive, x"2A")

110001011010011110100111011011010011110011

The executor side - for Receive

DUT (UART)

p_transmit

p_receive

p_main (test-sequencer)

B
F
M

RX TX transmit(x"C1")

T
L
M

receive_uart(x"2A")

receive(UART, x"2A")

receive(UART,
x"2A", WARNING,

1 ms, FAILURE)

 Must detect command from central test sequencer

 Then execute BFM receive() towards the DUT

 A VHDL process cannot do both at the same time

  May need VHDL Verification Component (VVC)

 VVC for receive()

T
L
M

receive(x"2A")

The critically missing VHDL testbench feature 15

From UART BFM and VVC template to UART VVC : 1 hour

Hitting the corner cases

DUT
(UART)

“Ext.” I/O

Other

Ports

Clocks

Bus interface

Clock

Generation

Test

Seq.

UART

VVC

PIF

VVC
Baudrate

Checker

TX/RX

handling

Bitvis Utility Library BFMs UVVM & VVCs

Simple test sequencer example:
. . .

write(PIF, C_ADDR_TX, x"2A", "Uart TX");

expect(UART, RX, x"2A“, "From DUT TX");

transmit(UART, TX, x“C1”);-- into DUT RX

insert_delay(UART, TX, 2*C_BIT_PERIOD);

transmit(UART, TX, x“C2”);

await_completion(UART);

check(PIF, C_ADDR_RX, x“C1", "Uart RX");

check(PIF, C_ADDR_RX, x“C2", "Uart RX");

await_completion(PIF);

………

report_simulation_summary;

The critically missing VHDL testbench feature 16

110001011010011110100111011011010011110011

Making a comprehensive test (1)

Simple test sequencer example:
. . .

write(PIF, C_ADDR_TX, x"2A", "Uart TX");

expect(UART, RX, x"2A“, "From DUT TX");

transmit(UART, TX, x“C1”);-- into DUT RX

insert_delay(UART, TX, 2*C_BIT_PERIOD, "Between 2 transmits");

transmit(UART, TX, x“C2”, "2nd of two transmits. Delay between");

await_completion(UART);

check(PIF, C_ADDR_RX, x“C1", "Uart RX");

check(PIF, C_ADDR_RX, x“C2", "Uart RX");

await_completion(PIF);

………

report_simulation_summary;

DUT
(UART)

“Ext.” I/O

Other

Ports

Clocks

Bus interface

Clock

Generation

Test

Seq.

UART_
VVC

PIF_
VVC

Baudrate

Checker

TX/RX

handling

Bitvis Utility Library BFMs UVVM & VVCs

test_uart_transmit_with_delay(<data_tx>, <data_rx>, <delay>);

In central test sequencer

test_uart_transmit_random_with_skewed_delay(<num_times>);

-- random data and random delay

The critically missing VHDL testbench feature 17

UVVM provides an enhanced version of
OSVVM Random & Coverage

110001011010011110100111011011010011110011

Making a comprehensive test (2)

uart_transmit_buffer(<buffer_idx>, <num_bytes>);

Inside UART_VVC (in executor):

Calls from central sequencer:

Using VVC local test sequencers

Inside PIF_VVC (in executor):

pif_check_buffer(C_ADDR_RX, <buffer_idx>, <num_bytes>);

uart_transmit (UART_VVC,1,TX, BUFFER, C_TX_BUFFER, <num_bytes>);

pif_check (PIF_VVC,1, C_ADDR_RX, BUFFER, C_TX_BUFFER, <num_bytes>)

Name of procedures and use of parameters is a user choice

The critically missing VHDL testbench feature 18

DUT
(UART)

“Ext.” I/O

Other

Ports

Clocks

Bus interface

Clock

Generation

Test

Seq.

UART_
VVC

PIF_
VVC

Baudrate

Checker

TX/RX

handling

Bitvis Utility Library BFMs UVVM & VVCs

uart_transmit (UART_VVC,1,TX, BUFFER, C_TX_BUFFER, <num_bytes>);

pif_check (PIF_VVC,1, C_ADDR_RX, BUFFER, C_TX_BUFFER, <num_bytes>)

uart_transmit (UART_VVC,1,TX, <num_bytes>);

pif_check (PIF_VVC,1, C_ADDR_RX, <num_bytes>)

Solving the multi-interface problem

 Central Sequencer with TLM and VVCs:

 One single brain in the system

 Inherent synchronisation between sequencer and VVCs

 No process is starting by "pure magic"

 Full control of complete env. from the main sequencer

 Allows simple queuing of commands

 Lego-like VVC connections

 Global connections and proper Verbosity control:

 Automatic connection between sequencer and VVC

 Allows built-in VVCs (+ checkers and monitors)

 Excellent transcript of test sequence

 Allows selected progress information at all levels

The critically missing VHDL testbench feature 19

110001011010011110100111011011010011110011

Wishful thinking? - Recaptured

Wouldn't it be nice if we could ...

 handle any number of interfaces in a structured manner?

 reuse major TB elements between module TBs?

 reuse major module TB elements in the FPGA TB?

 read the test sequencer almost as simple pseudo code?

 recognise the verification spec. in the test sequencer?

 understand the sequence of event

- just from looking at the test sequencer










The critically missing VHDL testbench feature 20

110001011010011110100111011011010011110011

 A typical corner case - found everywhere

 Verification components

 Experience data on making a new VVC

 Simulation progress information

 Debug friendliness

 Low user threshold

 Constrained random and functional coverage

More info in tutorial @13:30 today

The critically missing VHDL testbench feature 21

A 90 min. course - for free 

Must register
for the tutorial
in the reception.

Note:
Limited seating.

110001011010011110100111011011010011110011

Ballpark numbers on benefits

Using a structured TB like UVVM for handling multi-interfaces issues

Savings on a mainly control or protocol oriented design:
 a) 2000-hour FPGA Development Project: 100-500 MH
 b) 5000-hour FPGA Development Project: 500-1500 MH
 Increasing from project to project

 Additionally saving a lot of time for SW developers
 Significantly improving quality on final product
 Drastically improving LCC and TTM

The critically missing VHDL testbench feature 22

UVVM will be freeware

110001011010011110100111011011010011110011

Thank you

Your partner for Embedded SW and FPGA
www.bitvis.no

The critically missing
VHDL testbench feature

- Finally a structured approach

