MAX 10 -> The Next Step In Low Cost FPGA Integration

FPGA World September 2015

Innovation Leader Across the Board

FPGAs and CPLDs

Low Cost, Non-volatile

FPGAs

Cost/Power Balance Mid-range FPGAs

FPGAs

SoC & Transceivers SoC & Transceivers

FPGAs

Optimized for High Bandwidth **PowerSoCs**

High-efficiency **Power Management**

RESOURCES

Embedded Soft and Hard Processors

> Nios° II **ARM**

Design Software

DSP Builder

Development Kits

Intellectual Property (IP)

- Industrial
- Computing
- Enterprise

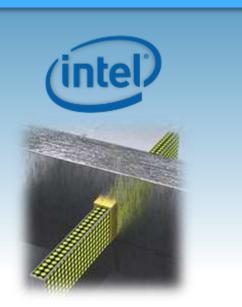
GENERATION Portfolio of FPGAs and SoCs

TSMC 55 nm Embedded Flash

Instant-on, low-cost, non-volatile FPGAs

TSMC 20 nm

Highest Performance 20 nm FPGA and SoCs



Intel 14 nm Tri-gate

2x Higher Core Performance vs. 28 nm

Best in class
Semiconductor
Innovation & Technology

Compelling New Device Architectures

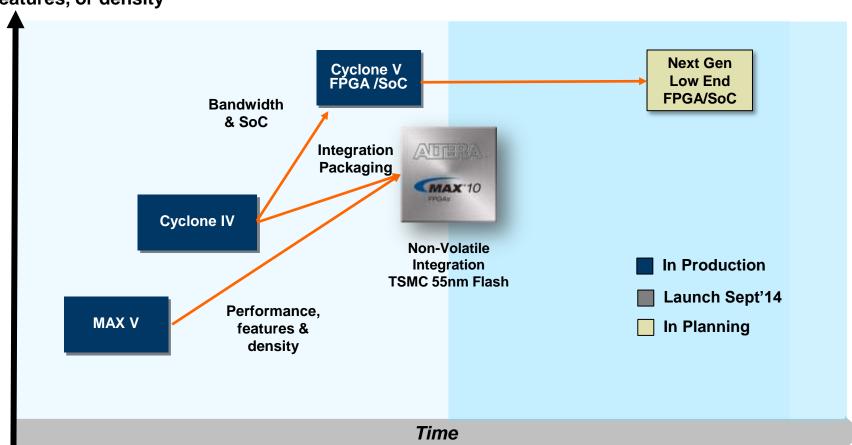
Strategic Investments
That Open
Up New Markets

Expanding Opportunities for FPGAs

2X
Core Performance

5.5 M Logic Elements

Heterogeneous 3D SiP Integration


Intel 14 nm Tri-Gate

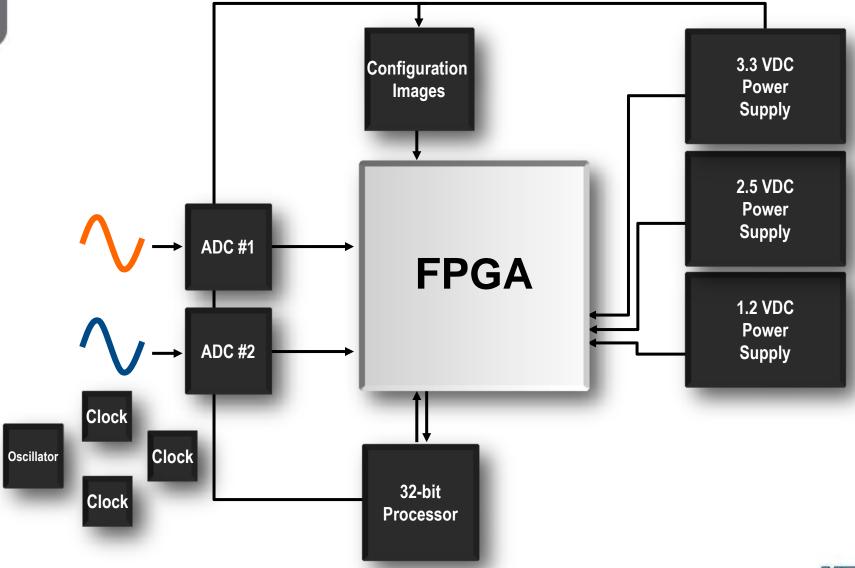
Most Comprehensive Security Quad-Core
Cortex-A53
ARM Processor

Altera Continues Focus & Investment in Low End Families

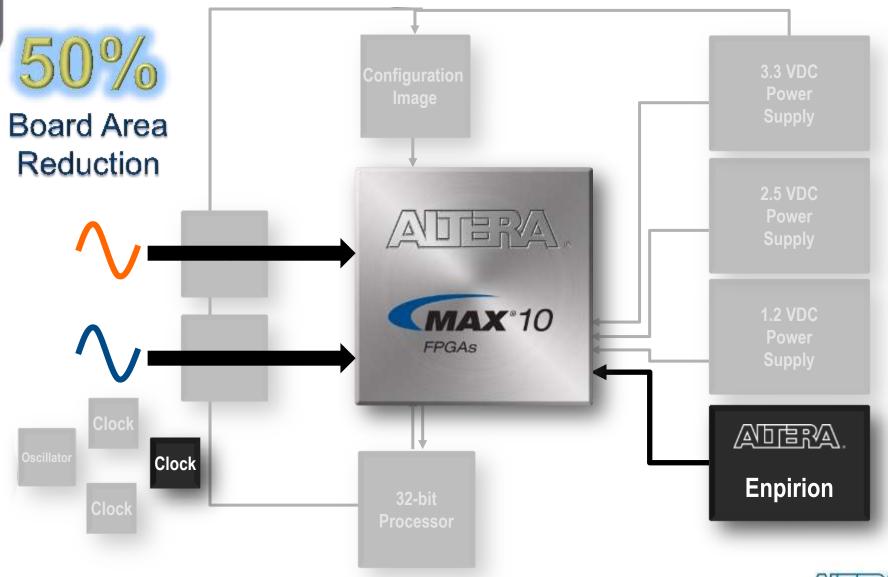
More performance, features, or density

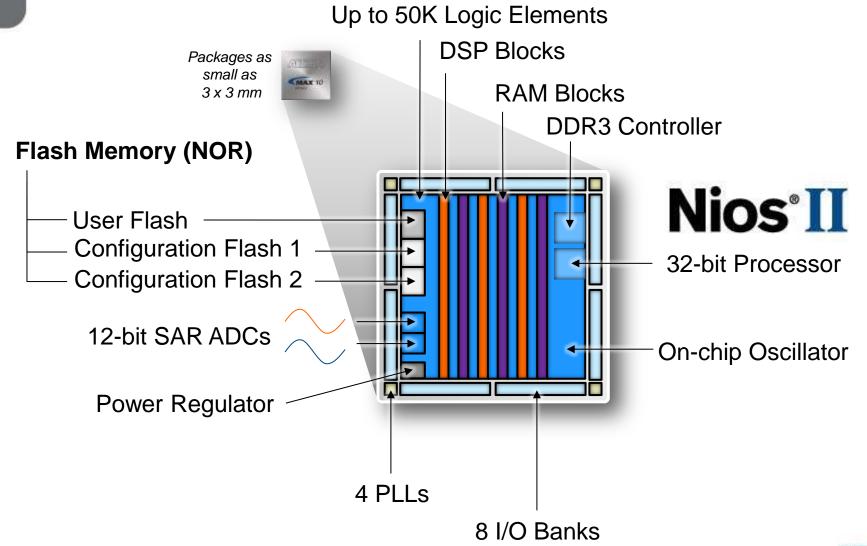
What makes it different?

It's time to rethink what an FPGA is.

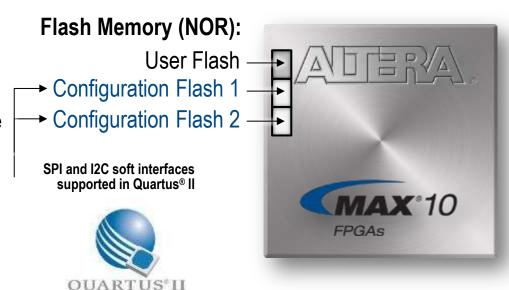

altera.com/max10

- Dual Non Volatile Images
 - Internal Flash to hold two images
 - Faster time to operation
- Secure Configuration
 - Two stage boot feature, AES
- Integrated ADC
 - Flexible sampling
- Soft Processor Support
 - Secure Internal Boot
- Single Supply



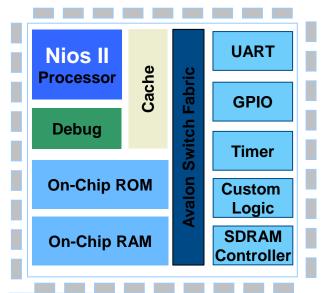

Traditional FPGA System Components

MAX 10 Simplifies Traditional FPGA Systems


Lower BOM, Smaller PCB Area, Instant-on Configuration

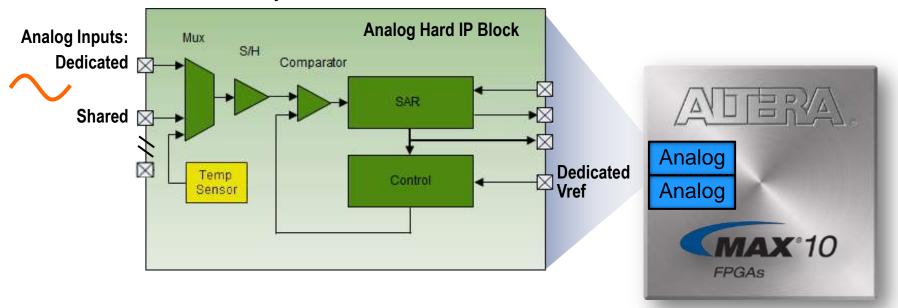
Integrated Embedded Flash Increases System Value

- Lower total cost of ownership
 - Reduced BOM
 - Smaller board area
- Reduced system risk
 - Fewer vendors to manage
 - Simpler PCB design
 - Supports long life cycles
- Fail-safe remote updates
 - Store two configuration images
- Improved system management
 - Instant-on configuration
 - Power-up sequencing



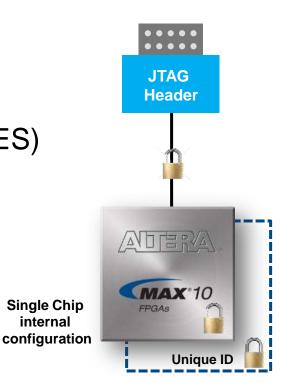
Embedded Processing Capabilities Increase System Value

- Single-chip embedded processor system
 - Soft core Nios II processor support
 - Very small footprint
 - No external RAM or storage needed
- User-customizable processor
 - Flexibility MCUs don't offer
- Supports real-time applications
 - Configuration in under 10 ms
 - Meets automotive and industrial regulatory requirements
- Supports longer life cycles

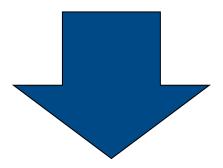

Customizable logic

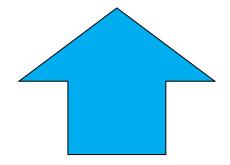
Increase System Value with Integrated Analog Blocks

- In-chip system monitoring
 - Integrated ADCs
 - Reduce board space
 - Flexible sample sequencing
 - Lower latency


- Measure environmental conditions
 - Integrated temperature sensor

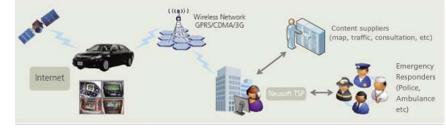
Increase Security by adding Anti Tamper Features


- Single chip solution with up to 2 secure images
- Advanced Encryption Standard (128-bit AES) protection
 - Non-volatile key for external & internal configuration
- JTAG port security protection
 - Read disable or Read/Write disable (OTP)
 - Prevents reverse engineering
- Chip ID
 - Non volatile 64 bit unique ID for asset traceability
- Verify Protect
 - Allows disabling of CFM read back


internal

MAX 10 FPGA Customer Benefits

Lowers System Cost


Increase Board Reliability

Single-chip integration item	Customer Benefits		
N components 2 1 component	Higher system reliability (less failure points)		
N-components → 1 component	Reduced BOM/System Cost		
Doduced DCD Feetprint	Simpler PCB Design		
Reduced PCB Footprint	Fewer PCB layers → Lower PCB cost		
Fewer Suppliers	Less vendors to manage		
PLD have Longer Life-cycles	Avoids EOL vs. other technologies		

So where does it fit ?

No right or wrong answer

Consumer

Motor Driving

Automotive - Infotainment

Connectivity

Embedded Vision

Sensor Fusion

Commercial

Secure Applications

Functional Safety

Motor Control

Industrial – Factory Automation

Machine Vision

MAX 10 FPGA – Family Plan

Device	LEs	Block Memory (Kbits)	18x18 Mults	PLLs	Internal Config.	User Flash ¹ (KBytes)	ADC, TSD	External RAM I/F
10M02	2,000	108	16	1, 2	Single	12	-	Yes ²
10M04	4,000	189	20	1, 2	Dual	16 – 156	1, 1	Yes ²
10M08	8,000	378	24	1, 2	Dual	32 – 172	1, 1	Yes ²
10M16	16,000	549	45	1, 4	Dual	32 – 296	1, 1	Yes ³
10M25	25,000	675	55	1, 4	Dual	32 – 400	2, 1	Yes ³
10M40	40,000	1,260	125	1, 4	Dual	64 – 736	2, 1	Yes ³
10M50	50,000	1,638	144	1, 4	Dual	64 – 736	2, 1	Yes ³

Notes:

- 1. User Flash depends upon configuration option.
- 2. SRAM only.
- 3. SDR SDRAM, SRAM, DDR3, DDR2, or LPDDR2.
- 4. ADC blocks available on die but may not be available in low pin count packages.

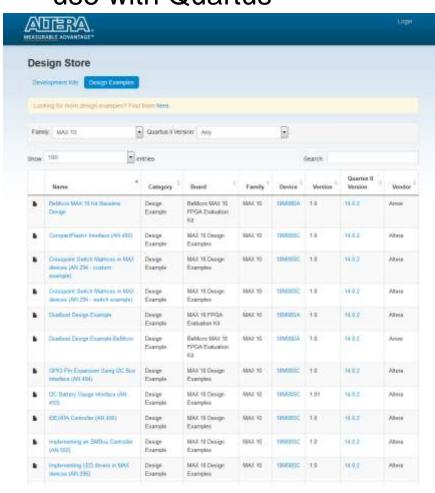
Development Tools and Solutions

Quartus II Software and IP Support

- Quartus® II software
 - Number one design software in performance and productivity
 - MAX 10 FPGA compilation & EPE support
 - Flash and ADC Megawizards (New!)
 - Analog Tool Kits for ADC evaluation and debug (New!)

- Includes Qsys system integration and DSP Builder for increased productivity
 - Nios II support and DSP Builder + Advanced Block-set
- Abundant IP & reference designs
 - Altera Design Store (New!)

MAX10 FPGAs App Notes & Design Examples


Available on Design Store

AN 496 - Using the Internal Oscillator in Altera MAX Series
AN 547: Putting Altera MAX Series in Hibernation Mode Using User Flash Memory
AN 425: Using the Command-Line Jam STAPL Solution for Device Programming
AN 502: Implementing an SMBus Controller in Altera MAX Series
AN 630: Real-time ISP and ISP Clamp for Altera MAX Series
AN 494: GPIO Pin Expansion using I2C Bus Interface in Altera MAX Series
AN 485: Serial Peripheral Interface Master in Altera MAX Series
AN 486: SPI to I2C Using Altera MAX Series
AN 488 - Stepper Motor Controller using Altera MAX Series
AN 294: Crosspoint Switch Matrices in Altera MAX Series
AN 501: Pulse Width Modulations Using Altera MAX Series
AN 500: NAND Flash Memory Interface with Altera MAX Series
AN 509: Multiplexing SDIO Devices Using Altera MAX Series
AN 490: Altera MAX Series as Voltage Level Shifters
AN 265: Using Altera MAX Series as a Microcontroller I/O Expander
AN 286: Implementing LED Drivers in Altera MAX Series
AN 498: LED Blink Using Power Sequencing in Altera MAX Series
AN 495: IDE/ATA Controller Using Altera MAX Series
AN 492: CF+ Interface using Altera MAX Series
AN 493: I2C Battery Gauge Interface using Altera MAX Series
AN 491: Power Sequence Auto-start Using Altera MAX Series

MAX 10 Designs in the Design Store

Long list of MAX 10 designs - tested, packaged, and ready to use with Quartus

	Votage Level Stations (AV 200)	Design Example	MAX 10 Design Exemples	8860.10	1MARK	10	11.02	Admir
	Design the Interest Coordinate or NAVI. Revious (WV-PR)	Design Energie	MAX 10 Design Energies	MAC 10	mond	1.0	14.0.2	Attera
	Stagger Milder Controller (Mil 488)	Design Example	MAX 10 FPGA Enthration N3	SAUL 10	VORDOLLA,	10	14.0.2	Atteria
٠	The poor foliate Commoline (AN 488) Traditions	Design Example	SMilico MAI 18 PPGA Evaluation FOI	MAK 10	MINISTER,	10	14.0.2	Anne
	Striple PWM Design	Design Example	Beldicos MAXI.18 PPGA Evaluation KIX	9007,10	TOMOSEIA	89	(94.62)	Attex
•	Soul Engrand books Motor (MC48)	Design Example	MAX 10 Design Exemples	3000 (6)	10M/890	X9	10.02	Attors
	Harrison Fractury Settings LESS Plants	Design Example	MAX 10 FFGA Evaluation 103	MALTE	TEROPSA	10	14.02	Attent
	PANCeugn	Design Exercise	MAX 10 FPOA Evenetica Kit	864.10	TOROGO,	1.0	14.02	Altre
•	Fusing Atena Max Sense in Historia saling User Plank Memory (AMILET)	Design Example	MAX 10 Design Examples	MAX 10	VENDER	10	14.00	Altera
	Pulsa Wells Medidation (AN SR1)	Design Example	MAX 10 Danigs Examples	1001.10	TOMOSSC	1,0	10.02	Attex
٠	Power Sequence Auto Start (IVIII 4311)	Design Exemple	MAX to Design Examples	3000 16	HMARSO	1.0	14.0.2	Alberi
	On the Temperature Service Decays Exemple	Deligit Example	MAX 10 FPGA Evaluation His	MALTE.	TEMOCSA	10	11.0.2	Attent
٠	6000 Flash Monney Imadaca (00) 600	Design Everyte	MAX 10 Design Examples	SULE 10	TOMORIC	10	14.02	Atters
	Multiple only SDIO Devices (HSI 100)	Design Example	MAX 10 Design Examples	664K-10	VINESC	10	16.00	Alleca
٠	Murameraties I/O Engander (All 250)	Deerge Exemple	MAX 10 Diorge Exemptes	944(10	1014(095)	1,0	14.0.2	Attes
•	MAZ 18 Estimate 10 Baseline Design	Design Example	MAX W FPGA Evaluation IO	MAC III	MANUSA	1.0	14.002	Albera
	(401.488)	Example	Energies					

Altera MAX 10 Kit Demos / Design Examples

Kit Demos and Design Examples	Available	Target	Location
Sleep Mode Demo Design Dev Kit	Now	10M50 Dev Kit	Kit installed
Dual Configuration Dev Kit	Now	10M50 Dev Kit	Kit installed
Remote System Update Dev Kit	Now	10M50 Dev Kit	Design Store
Board Management Controller Reference Design	Q3'15	10M50 Dev Kit	Design Store
Nios II Golden HW Reference Design	Now	10M50 Dev Kit	Design Store
Nios II NEEK Full Featured Design	Q3'15	MAX 10 NEEK	Design Store
Nios II Ethernet Design	Now	10M50 Dev Kit	Design Store
Nios II MCU Replacement Designs	Now		Design Store
MAX 10 Kit Base Designs (pin assignments)	Now	All Kits	Design Store
Nios II Arduino LCD Design (<u>Eval Kit</u>)	Now	10M08 Eval Kit	Design Store

Base designs great, fast way to start a kit design

End Market BU Reference Designs

Demos and Design Examples	BU Segment	Location	Target Date*	
Industrial Ethernet Multi-protocol	Industrial- Ethernet	By request	Q3	
Drive-on-Chip FOC	Industrial – Motor Control	By request	Q3	
DC-DC Conversion	Industrial -Motor Control	Design Store	Available Now	
I/O Module Controller	Industrial – I/O	By request	Late Q2	
Info: MIPI Demo	Automotive	By request	Q3	
Advanced Driver Assist	Automotive	By request	Q3	

MAX® 10 FPGA Kit Portfolio

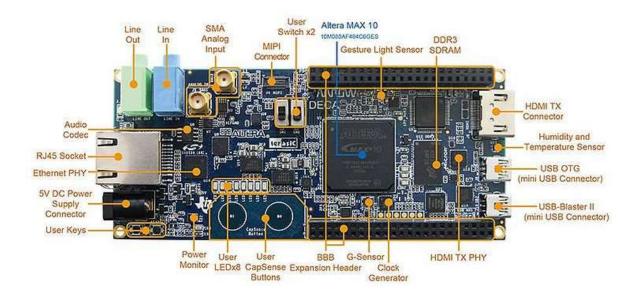
MAX 10 FPGA Evaluation Kits

- Ultra Low Cost Eval
- Logic, I/O, power Eval
- Arduino
- 4 package/density options to choose
- Enpirion PowerSoCs

Development Kit

- High Density Development
- Ref Design Platform
- **⋖** 300 MHz DDR3
- ADC Evaluation (SMAs)
- ✓ HDMI TX, HSMC
- Enpirion PowerSoCs

Altera NEEK 10 Kit


- CIII NEEK Evolution with applications ported
- Large multi-touch screen
- Sensors, accelerometers, wireless
- Available end of July 2015

Arrow DECA 10 Workshops

- Build Hands-On Experience
 - Silkeborg, Arrow office, October 6th
 - Herley, Arrow office, October 7th

http://www.arroweurope.com/news-events/events-webinars/detail/article/arrow-altera-deca-workshops.html

Thank You

It s time to rethink what an FPGA is.

altera.com/max10

