Power Matters.

SmartFusion2 – Embedded system "Root-of-Trust" Secure Boot Demonstration

Peter Trott Snr FAE - Microsemi

Agenda

- Embedded System Threats
- Secure Boot / Root-of-Trust (RoT)
- Multi-Stage CPU Boot Process
- Non-Secure Processor Problem
- Microsemi Secure Boot Solution
- Secure Boot Demo

Embedded Systems Threats

- We are under attack!
- Hacking of embedded microprocessor based systems is on the rise
 - Easy to obtain embedded products
 - Readily available tools / techniques on hacker websites
- Improved security measures required to counter these increasing sophisticated attacks.

Secure Boot

- Cornerstone of embedded system security is to ensure that only <u>authorized</u> microprocessor code is loaded and executed.
- The process of guaranteeing the execution of authentic code is called 'Secure Boot'
- Booting processors from known trusted code
 - Prerequisite for the secure operation of embedded systems
- If the initial hardware and boot code can be trusted, then this trust can be extended to code loaded and executed later.
- The foundation for Secure Boot is the Root-of-Trust (RoT)

Root-of-Trust (RoT)

- A root-of-trust is essential to implement secure boot
- Root-of-trust is an entity that can be trusted to behave in an expected manner
 - Supports verification of system, software and data integrity
 - Keeps keys and critical data confidential
 - Its processes are immutable
 - Works in conjunction with other system elements to ensure system security

A Root-of-Trust is the foundation upon which all other security layers are created and trusted.

Root-of-Trust Examples

- Trusted Platform Module (TPM)
 - Industry standard external Root-of-Trust device
 - Provides cryptographic services with static RSA key
- Processors with built in security features
 - One time programmable key storage
 - Immutable on-chip microcode
 - May not support the full suite of security functions needed
 - Anti-tamper, data encryption at rest, DPA resistance, ROM scrambling, etc
- Select SoC FPGAs (SmartFusion2 / Igloo2)
 - Cryptographic services, True random number generator
 - Stronger design security, On-chip oscillators
 - Anti-tamper measures (DPA resistance, Zeroization)
 - On-chip Flash
 - Vastly better computational power, more IOs and a variety of built-in interfaces

CPU Multi-Stage Boot Process

- Typical Multistage Boot (unsecure)
 - From boot to app its non stop execution!

- Secure Multistage Boot
 - Initialize an embedded system from rest with trusted code
 - Validation of each stage performed by the prior stage
 - Establishes a 'chain of trust' all they way to the top application layer

Secure Multi-Stage Boot Code Validation

- Code validation can be done by symmetric or asymmetric key cryptography techniques
 - Build an inherently trusted key (public) into the phase-0 boot loader
 - Phase-1 code is digitally signed using key (private)
 - During Phase-0 the system validates the digital signature of the Phase-1 code, prior to execution
 - Boot if signature validates
 - Abort boot apply system penalties if invalid
- Immutability of the Phase-0 Key is critically important
 - Anti-Tamper Monitors

icrosemi

Non-Secure Processors

- Secure boot is challenging when the target processor has no inherent security capabilities
 - Does not have root-of-trust capability
 - Low end Microprocessors, Microcontrollers, DSP's
- Customers in many market segments face this issue
 - Telecom, Military, Industrial, Medical, Energy
- Processors located in peripheral or remote subsystems are especially vulnerable to attack

Secure Boot Hardware Configuration

- SmartFusion2/Igloo2 can be used as a root-of-trust
 - Assist in securing the multi-phase boot processes

Secure Boot Process (Phase-0 and 1)

Secure Boot in a 'nut shell'

- Assumes processor has no inherent security capabilities
- Securely boot processor with Phase-0 code
- Establish a AES session key between processor and SmartFusion2 RoT to secure the communication channel
- Transfer subsequent Phase-x code and code validation keys over secure channel to target processor.
- Target processor will validate Phase-x code
 - Execute code if validated
 - Apply system penalties if code does not validate

Load/Validate Phase-0 Code

Establish Ephemeral Session Key(ESK)

Share Phase-x Encryption/Validation Keys

Load/Validate/Decrypt/Execute Phase-x Code

Summary

- SmartFusion2/Igloo2 are ideal devices to implement RoT
 - Anti-tamper and Integrity check hardware
 - Data storage with HW firewalls
 - True HW RNG and AES engine
 - Significant FPGA space for system integration, tamper monitoring and strong penalties.
- Secure Boot architecture is scalable
 - Modify based on target processors capabilities
- Single Secure Boot solution
 - Same solution regardless of processor capability
 - Ideal for customers deploying different processors.

Phase-0 Secure Boot Process Flow

😳 Microsemi.

- Demonstrate secure boot of a non-secure processor
 - Microprocessor that has no inherent security capabilities
 - SmartFusion Eval board used for convenience
- Demonstrates Phase-0 and Phase-1 boot stages
 - Boot an unsecure microprocessor with trusted code
 - Validate that microprocessor is executing this trusted code
- Demonstrates use of SmartFusion2 as a root-of-trust

Secure Boot Device Resource Utilization

Cortex-M3 Based SmartFusion2 Utilization (Phase-0 and 1)

Resource	M2S005	M2S050
1170 LUTS	24%	2.4%
7 uSRAMs	64%	10%
0 LSRAMs	0%	0%
64kB eNVM	50%	25%

CoreABC based SmartFusion2/Igloo2 utilization (Phase-0 only)

Resource	M2S005	M2S050
2300 LUTS	46%	4.7%
7 uSRAMs	64%	10%
1 LSRAMs	10%	1.4%
32kB eNVM	25%	12.5%

- Performance
 - Max SPI Clock = 30MHz (eNVM & AES limited)

Thank You!

SM&RTFUSION[®]2

Microsemi Corporation One Enterprise, Aliso Viejo, CA 92656 Ph: 949-380-6100 Fax: 949-215-4996 <u>www.microsemi.com</u> For more information: <u>Sales.Support@microsemi.com</u>

© 2015 Microsemi Corporation. COMPANY PROPRIETARY

Power Matters. 21

Backup Slides

Backup Slides

© 2015 Microsemi Corporation. COMPANY PROPRIETARY

Power Matters. 22

Secure Boot Using CoreABC

😳 Microsemi.