
High-Performance Reconfigurable Computing Group

University of Toronto

SimXMD: Simulation-based

HW/SW Co-Debugging for

FPGA Embedded Systems

Ruediger Willenberg and Paul Chow

September 9, 2014

FPGAworld 2014

The “When Harry Met Sally” rule of CAD

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2

The “When Harry Met Sally” rule of CAD

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3

The “When Harry Met Sally” rule of CAD

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4

The “When Harry Met Sally” rule of CAD

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5

The “When Harry Met Sally” rule of CAD

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

7

 CPU

Application

Peripheral B

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

8

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

9

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
0

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
1

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
2

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
3

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

Optimal: Debug hardware, software and their

 interaction together

FPGA embedded systems

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
4

 CPU

Application

Peripheral B

FPGA

 CPU

Application

Peripheral A Peripheral B

FPGA

 CPU

Application

Peripheral A

Peripheral B other
on-chip

hardware

FPGA

 CPU

Application

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

 CPU

Application

Driver code
(untested)

Peripheral A
(not verified)

Peripheral B other
on-chip

hardware
(not

verified)

FPGA

Optimal: Debug hardware, software and their

 interaction together

Embedded SW debugging chain

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
5

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

Embedded SW debugging chain

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
6

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

Embedded SW debugging chain

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
7

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

• Software runs on target system

Embedded SW debugging chain

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
8

XMD

JTAG

Xilinx FPGA

CPU
GDB

TCP
GUI

• Debugger on host system

• Vendor-specific interface software

• Software runs on target system

Embedded SW debugging chain

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

1
9

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
0

ModelSim
system_tb.v

system.v

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
1

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
2

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
3

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

• Testbench instantiates and stimulates model

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
4

ModelSim
system_tb.v

system.v

• Cycle-accurate digital simulator

• A system model in HDL

• Testbench instantiates and stimulates model

• All internal signals observable

HW debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
5

HW/SW Co-Debugging?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
6

ModelSim
system_tb.v

system.vGDB

GUI

HW/SW Co-Debugging?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
7

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

HW/SW Co-Debugging?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
8

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

• SimXMD: Simulation-based eXperimental

 Microprocessor Debugger

HW/SW Co-Debugging?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

2
9

ModelSim
system_tb.v

system.vGDB

GUI

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

• SimXMD: Simulation-based eXperimental

 Microprocessor Debugger

• Translates debugger requests into

simulator commands

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
0

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

• Xilinx MicroBlaze Trace Port

– Reports all information about a finished instruction:

• Instruction code and address

• Register and memory writes

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
1

Key SimXMD enablers

• GDB Remote Serial Protocol

– Defines requests and replies for:

• Setting/deleting breakpoints

• Advancing execution by instruction, line, breakpoint

• Reading registers or memory state

• Xilinx MicroBlaze Trace Port

– Reports all information about a finished instruction:

• Instruction code and address

• Register and memory writes

• ModelSim (Tcl) TCP server capability

– Can receive remote commands and send back results

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
2

Operating SimXMD: Preparation

1. Simulation model generation by design tool

– Currently: Xilinx Platform Studio

2. SimXMD is started (background operation)

– Examines embedded project information

– Modifies simulation model for Co-Debugging

3. Compilation of simulation model

4. Start of simulation

5. Start of preferred debugger (GUI)

6. Debugging at will

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
3

Operating SimXMD: Modes

• In Run mode, debugging drives the simulation

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
4

x2 0x3 0x4 0x5

PC = 5

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

Operating SimXMD: Modes

• In Run mode, debugging drives the simulation

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
5

x2 0x3 0x4 0x5

PC = 5

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5

PC = 5

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

pick Replay time

Operating SimXMD: Modes

• In Run mode, debugging drives the simulation

• In Replay mode, debugging iterates over previously

simulated data

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
6

x2 0x3 0x4 0x5

PC = 5

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5

PC = 5

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

pick Replay time

x2 0x3 0x4 0x5

PC = 3

Replay

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

Operating SimXMD: Modes

• In Run mode, debugging drives the simulation

• In Replay mode, debugging iterates over previously

simulated data

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
7

x2 0x3 0x4 0x5

PC = 5

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5

PC = 5

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

pick Replay time

x2 0x3 0x4 0x5

PC = 3

Replay

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

x2 0x3 0x4 0x5 0x6

PC = 6

Run

int main()

{

 a = functionA();

 b = functionB(a);

 c = b + 5 * d;

 return c;

}

SimXMD at work

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
8

Implementation: Debugging memory

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

3
9

Implementation: Debugging memory

• Digital hardware simulation models the complete

memory hierarchy:

– On-chip and external memory

– All cache levels

– Memory-mapped peripherals

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
0

Implementation: Debugging memory

• Digital hardware simulation models the complete

memory hierarchy:

– On-chip and external memory

– All cache levels

– Memory-mapped peripherals

• Software debugging uses a flat, linear memory

model:

– The debugger requests a (virtual) memory address

– The target hardware determines and reads

the physical location

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
1

Boot
Memory

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

SimXMD memory access logging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
2

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

Boot
Memory

SimXMD memory access logging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
3

Shared
Log

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

$memlog

VPI

Boot
Memory

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
4

GDB
SimXMDTCP

ModelSimTCP
system_tb.v

system.v

GUI

Shared
Log

$memlog

VPI

Boot
Memory

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
5

SimXMD
ModelSimTCP

system_tb.v
system.v

Shared
Log $memlog

VPI

Boot
Memory

GDB
TCP

GUI

SimXMD memory access logging

VPI: Verilog Procedural Interface

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
6

SimXMD tool support

• Xilinx Embedded Development Kit >= 13.x

– Xilinx MicroBlaze Processor >= 8.x

• MentorGraphics ModelSim >= 6.6g

• Linux Operating System

• Debuggers

– Command-line GDB

– Xilinx SDK (Eclipse)

– DDD

– KDbg

– Nemiver

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
7

SimXMD modular architecture

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
8

SimXMD limitations

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

4
9

SimXMD limitations

• Debugger can’t modify variables, registers

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
0

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
1

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

• Trace Port reports actions after instruction

completes; several cycles difference

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
2

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

• Trace Port reports actions after instruction

completes; several cycles difference

• Not all MicroBlaze special registers reported

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
3

SimXMD limitations

• Debugger can’t modify variables, registers

• Volatile memory locations might be inaccurate

– Shared-memory multiprocessing

– DMA, Busmastering

– Memory-mapped peripherals

• Trace Port reports actions after instruction

completes; several cycles difference

• Not all MicroBlaze special registers reported

• Instruction code only from on-chip RAM

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
4

SimXMD and multiprocessors?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
5

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
6

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

• Future work:

– On-the-fly switching between cores

– Concurrent debugging of several cores

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
7

SimXMD and multiprocessors?

• Any one core in a multicore system can be

selected for debugging

• Future work:

– On-the-fly switching between cores

– Concurrent debugging of several cores

• The same memory volatility issues apply:

– Logging of virtual memory accesses per processor

• Different virtual addresses - same physical address?

– Race conditions likely

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
8

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

5
9

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

• How slow is SimXMD debugging in comparison

with debugging a real target?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
0

SimXMD Performance

• How much do the SimXMD modifications slow

down simulation?

• How slow is SimXMD debugging in comparison

with debugging a real target?

• Test system:

– Host: Intel i5 Nehalem 4-core, 2.5Ghz, 12GB RAM

– Target: Xilinx Spartan 6 (Atlys board), JTAG

 Microblaze @ 100MHz, 64kB on-chip BRAM

 AXI bus, one GPIO peripheral

– Application: Writing 32kB byte-by-byte into BRAM

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
1

SimXMD overhead

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
2

Write size w/o SimXMD w/ SimXMD

1 kByte 6.9 s 7.3 s

2 kByte 13.8 s 14.5 s

4 kByte 27.3 s 29.0 s

8 kByte 54.9 s 57.7 s

16 kByte 109.0 s 117.1 s

32 kByte 218.9 s 231.7 s

SimXMD overhead

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
3

Write size w/o SimXMD w/ SimXMD

1 kByte 6.9 s 7.3 s

2 kByte 13.8 s 14.5 s

4 kByte 27.3 s 29.0 s

8 kByte 54.9 s 57.7 s

16 kByte 109.0 s 117.1 s

32 kByte 218.9 s 231.7 s

Average overhead: 6.0%

SimXMD debugging speed

• Same system and application

• Let GDB execute script of 50 “steps” (1 code line)

• Average time for a single code step:

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
4

Hardware with JTAG 1.350 s

SimXMD Run mode 0.850 s

SimXMD Replay mode 0.313 s

Conclusions

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
5

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
6

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
7

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

• SimXMD is open source

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
8

Conclusions

• SimXMD enables:

– Simultaneous debugging of software and hardware

– Hardware debugging “timed” by software sections

– Software debugging without existing/implemented HW

• SimXMD does not significantly slow down

reasonable debugging efforts

• SimXMD is open source

• SimXMD’s modular architecture facilitates

extension to other processors and tools

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

6
9

Conclusions

SimXMD can be downloaded at:

http://www.eecg.toronto.edu/~willenbe/simxmd

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

7
0

Conclusions

SimXMD can be downloaded at:

http://www.eecg.toronto.edu/~willenbe/simxmd

Thank you for your attention!

Questions?

September 9, 2014 High-Performance Reconfigurable Computing Group ∙ University of Toronto

7
1

